Questions?
See the FAQ
or other info.

Polytope of Type {19,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {19,2,2}*152
if this polytope has a name.
Group : SmallGroup(152,11)
Rank : 4
Schlafli Type : {19,2,2}
Number of vertices, edges, etc : 19, 19, 2, 2
Order of s0s1s2s3 : 38
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {19,2,2,2} of size 304
   {19,2,2,3} of size 456
   {19,2,2,4} of size 608
   {19,2,2,5} of size 760
   {19,2,2,6} of size 912
   {19,2,2,7} of size 1064
   {19,2,2,8} of size 1216
   {19,2,2,9} of size 1368
   {19,2,2,10} of size 1520
   {19,2,2,11} of size 1672
   {19,2,2,12} of size 1824
   {19,2,2,13} of size 1976
Vertex Figure Of :
   {2,19,2,2} of size 304
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {19,2,4}*304, {38,2,2}*304
   3-fold covers : {19,2,6}*456, {57,2,2}*456
   4-fold covers : {19,2,8}*608, {76,2,2}*608, {38,2,4}*608, {38,4,2}*608
   5-fold covers : {19,2,10}*760, {95,2,2}*760
   6-fold covers : {19,2,12}*912, {57,2,4}*912, {38,2,6}*912, {38,6,2}*912, {114,2,2}*912
   7-fold covers : {19,2,14}*1064, {133,2,2}*1064
   8-fold covers : {19,2,16}*1216, {38,4,4}*1216, {76,4,2}*1216, {76,2,4}*1216, {38,2,8}*1216, {38,8,2}*1216, {152,2,2}*1216
   9-fold covers : {19,2,18}*1368, {171,2,2}*1368, {57,2,6}*1368, {57,6,2}*1368
   10-fold covers : {19,2,20}*1520, {95,2,4}*1520, {38,2,10}*1520, {38,10,2}*1520, {190,2,2}*1520
   11-fold covers : {19,2,22}*1672, {209,2,2}*1672
   12-fold covers : {19,2,24}*1824, {57,2,8}*1824, {38,2,12}*1824, {38,12,2}*1824, {76,2,6}*1824, {76,6,2}*1824a, {38,4,6}*1824, {38,6,4}*1824a, {228,2,2}*1824, {114,2,4}*1824, {114,4,2}*1824a, {57,6,2}*1824, {57,4,2}*1824
   13-fold covers : {19,2,26}*1976, {247,2,2}*1976
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18);;
s2 := (20,21);;
s3 := (22,23);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(23)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19);
s1 := Sym(23)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18);
s2 := Sym(23)!(20,21);
s3 := Sym(23)!(22,23);
poly := sub<Sym(23)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope