Questions?
See the FAQ
or other info.

Polytope of Type {14,14,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,14,4}*1568b
if this polytope has a name.
Group : SmallGroup(1568,858)
Rank : 4
Schlafli Type : {14,14,4}
Number of vertices, edges, etc : 14, 98, 28, 4
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {14,14,2}*784b
   4-fold quotients : {14,7,2}*392
   7-fold quotients : {2,14,4}*224
   14-fold quotients : {2,14,2}*112
   28-fold quotients : {2,7,2}*56
   49-fold quotients : {2,2,4}*32
   98-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  8, 43)(  9, 44)( 10, 45)( 11, 46)( 12, 47)( 13, 48)( 14, 49)( 15, 36)
( 16, 37)( 17, 38)( 18, 39)( 19, 40)( 20, 41)( 21, 42)( 22, 29)( 23, 30)
( 24, 31)( 25, 32)( 26, 33)( 27, 34)( 28, 35)( 57, 92)( 58, 93)( 59, 94)
( 60, 95)( 61, 96)( 62, 97)( 63, 98)( 64, 85)( 65, 86)( 66, 87)( 67, 88)
( 68, 89)( 69, 90)( 70, 91)( 71, 78)( 72, 79)( 73, 80)( 74, 81)( 75, 82)
( 76, 83)( 77, 84)(106,141)(107,142)(108,143)(109,144)(110,145)(111,146)
(112,147)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)
(120,127)(121,128)(122,129)(123,130)(124,131)(125,132)(126,133)(155,190)
(156,191)(157,192)(158,193)(159,194)(160,195)(161,196)(162,183)(163,184)
(164,185)(165,186)(166,187)(167,188)(168,189)(169,176)(170,177)(171,178)
(172,179)(173,180)(174,181)(175,182);;
s1 := (  1,  8)(  2, 14)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 15, 43)
( 16, 49)( 17, 48)( 18, 47)( 19, 46)( 20, 45)( 21, 44)( 22, 36)( 23, 42)
( 24, 41)( 25, 40)( 26, 39)( 27, 38)( 28, 37)( 30, 35)( 31, 34)( 32, 33)
( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 64, 92)
( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)( 70, 93)( 71, 85)( 72, 91)
( 73, 90)( 74, 89)( 75, 88)( 76, 87)( 77, 86)( 79, 84)( 80, 83)( 81, 82)
( 99,106)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)(113,141)
(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,134)(121,140)
(122,139)(123,138)(124,137)(125,136)(126,135)(128,133)(129,132)(130,131)
(148,155)(149,161)(150,160)(151,159)(152,158)(153,157)(154,156)(162,190)
(163,196)(164,195)(165,194)(166,193)(167,192)(168,191)(169,183)(170,189)
(171,188)(172,187)(173,186)(174,185)(175,184)(177,182)(178,181)(179,180);;
s2 := (  1,  2)(  3,  7)(  4,  6)(  8, 44)(  9, 43)( 10, 49)( 11, 48)( 12, 47)
( 13, 46)( 14, 45)( 15, 37)( 16, 36)( 17, 42)( 18, 41)( 19, 40)( 20, 39)
( 21, 38)( 22, 30)( 23, 29)( 24, 35)( 25, 34)( 26, 33)( 27, 32)( 28, 31)
( 50, 51)( 52, 56)( 53, 55)( 57, 93)( 58, 92)( 59, 98)( 60, 97)( 61, 96)
( 62, 95)( 63, 94)( 64, 86)( 65, 85)( 66, 91)( 67, 90)( 68, 89)( 69, 88)
( 70, 87)( 71, 79)( 72, 78)( 73, 84)( 74, 83)( 75, 82)( 76, 81)( 77, 80)
( 99,149)(100,148)(101,154)(102,153)(103,152)(104,151)(105,150)(106,191)
(107,190)(108,196)(109,195)(110,194)(111,193)(112,192)(113,184)(114,183)
(115,189)(116,188)(117,187)(118,186)(119,185)(120,177)(121,176)(122,182)
(123,181)(124,180)(125,179)(126,178)(127,170)(128,169)(129,175)(130,174)
(131,173)(132,172)(133,171)(134,163)(135,162)(136,168)(137,167)(138,166)
(139,165)(140,164)(141,156)(142,155)(143,161)(144,160)(145,159)(146,158)
(147,157);;
s3 := (  1, 99)(  2,100)(  3,101)(  4,102)(  5,103)(  6,104)(  7,105)(  8,106)
(  9,107)( 10,108)( 11,109)( 12,110)( 13,111)( 14,112)( 15,113)( 16,114)
( 17,115)( 18,116)( 19,117)( 20,118)( 21,119)( 22,120)( 23,121)( 24,122)
( 25,123)( 26,124)( 27,125)( 28,126)( 29,127)( 30,128)( 31,129)( 32,130)
( 33,131)( 34,132)( 35,133)( 36,134)( 37,135)( 38,136)( 39,137)( 40,138)
( 41,139)( 42,140)( 43,141)( 44,142)( 45,143)( 46,144)( 47,145)( 48,146)
( 49,147)( 50,148)( 51,149)( 52,150)( 53,151)( 54,152)( 55,153)( 56,154)
( 57,155)( 58,156)( 59,157)( 60,158)( 61,159)( 62,160)( 63,161)( 64,162)
( 65,163)( 66,164)( 67,165)( 68,166)( 69,167)( 70,168)( 71,169)( 72,170)
( 73,171)( 74,172)( 75,173)( 76,174)( 77,175)( 78,176)( 79,177)( 80,178)
( 81,179)( 82,180)( 83,181)( 84,182)( 85,183)( 86,184)( 87,185)( 88,186)
( 89,187)( 90,188)( 91,189)( 92,190)( 93,191)( 94,192)( 95,193)( 96,194)
( 97,195)( 98,196);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(196)!(  8, 43)(  9, 44)( 10, 45)( 11, 46)( 12, 47)( 13, 48)( 14, 49)
( 15, 36)( 16, 37)( 17, 38)( 18, 39)( 19, 40)( 20, 41)( 21, 42)( 22, 29)
( 23, 30)( 24, 31)( 25, 32)( 26, 33)( 27, 34)( 28, 35)( 57, 92)( 58, 93)
( 59, 94)( 60, 95)( 61, 96)( 62, 97)( 63, 98)( 64, 85)( 65, 86)( 66, 87)
( 67, 88)( 68, 89)( 69, 90)( 70, 91)( 71, 78)( 72, 79)( 73, 80)( 74, 81)
( 75, 82)( 76, 83)( 77, 84)(106,141)(107,142)(108,143)(109,144)(110,145)
(111,146)(112,147)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)
(119,140)(120,127)(121,128)(122,129)(123,130)(124,131)(125,132)(126,133)
(155,190)(156,191)(157,192)(158,193)(159,194)(160,195)(161,196)(162,183)
(163,184)(164,185)(165,186)(166,187)(167,188)(168,189)(169,176)(170,177)
(171,178)(172,179)(173,180)(174,181)(175,182);
s1 := Sym(196)!(  1,  8)(  2, 14)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)
( 15, 43)( 16, 49)( 17, 48)( 18, 47)( 19, 46)( 20, 45)( 21, 44)( 22, 36)
( 23, 42)( 24, 41)( 25, 40)( 26, 39)( 27, 38)( 28, 37)( 30, 35)( 31, 34)
( 32, 33)( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)
( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)( 70, 93)( 71, 85)
( 72, 91)( 73, 90)( 74, 89)( 75, 88)( 76, 87)( 77, 86)( 79, 84)( 80, 83)
( 81, 82)( 99,106)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)
(113,141)(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,134)
(121,140)(122,139)(123,138)(124,137)(125,136)(126,135)(128,133)(129,132)
(130,131)(148,155)(149,161)(150,160)(151,159)(152,158)(153,157)(154,156)
(162,190)(163,196)(164,195)(165,194)(166,193)(167,192)(168,191)(169,183)
(170,189)(171,188)(172,187)(173,186)(174,185)(175,184)(177,182)(178,181)
(179,180);
s2 := Sym(196)!(  1,  2)(  3,  7)(  4,  6)(  8, 44)(  9, 43)( 10, 49)( 11, 48)
( 12, 47)( 13, 46)( 14, 45)( 15, 37)( 16, 36)( 17, 42)( 18, 41)( 19, 40)
( 20, 39)( 21, 38)( 22, 30)( 23, 29)( 24, 35)( 25, 34)( 26, 33)( 27, 32)
( 28, 31)( 50, 51)( 52, 56)( 53, 55)( 57, 93)( 58, 92)( 59, 98)( 60, 97)
( 61, 96)( 62, 95)( 63, 94)( 64, 86)( 65, 85)( 66, 91)( 67, 90)( 68, 89)
( 69, 88)( 70, 87)( 71, 79)( 72, 78)( 73, 84)( 74, 83)( 75, 82)( 76, 81)
( 77, 80)( 99,149)(100,148)(101,154)(102,153)(103,152)(104,151)(105,150)
(106,191)(107,190)(108,196)(109,195)(110,194)(111,193)(112,192)(113,184)
(114,183)(115,189)(116,188)(117,187)(118,186)(119,185)(120,177)(121,176)
(122,182)(123,181)(124,180)(125,179)(126,178)(127,170)(128,169)(129,175)
(130,174)(131,173)(132,172)(133,171)(134,163)(135,162)(136,168)(137,167)
(138,166)(139,165)(140,164)(141,156)(142,155)(143,161)(144,160)(145,159)
(146,158)(147,157);
s3 := Sym(196)!(  1, 99)(  2,100)(  3,101)(  4,102)(  5,103)(  6,104)(  7,105)
(  8,106)(  9,107)( 10,108)( 11,109)( 12,110)( 13,111)( 14,112)( 15,113)
( 16,114)( 17,115)( 18,116)( 19,117)( 20,118)( 21,119)( 22,120)( 23,121)
( 24,122)( 25,123)( 26,124)( 27,125)( 28,126)( 29,127)( 30,128)( 31,129)
( 32,130)( 33,131)( 34,132)( 35,133)( 36,134)( 37,135)( 38,136)( 39,137)
( 40,138)( 41,139)( 42,140)( 43,141)( 44,142)( 45,143)( 46,144)( 47,145)
( 48,146)( 49,147)( 50,148)( 51,149)( 52,150)( 53,151)( 54,152)( 55,153)
( 56,154)( 57,155)( 58,156)( 59,157)( 60,158)( 61,159)( 62,160)( 63,161)
( 64,162)( 65,163)( 66,164)( 67,165)( 68,166)( 69,167)( 70,168)( 71,169)
( 72,170)( 73,171)( 74,172)( 75,173)( 76,174)( 77,175)( 78,176)( 79,177)
( 80,178)( 81,179)( 82,180)( 83,181)( 84,182)( 85,183)( 86,184)( 87,185)
( 88,186)( 89,187)( 90,188)( 91,189)( 92,190)( 93,191)( 94,192)( 95,193)
( 96,194)( 97,195)( 98,196);
poly := sub<Sym(196)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope