Questions?
See the FAQ
or other info.

Polytope of Type {8,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,8}*1568a
if this polytope has a name.
Group : SmallGroup(1568,917)
Rank : 3
Schlafli Type : {8,8}
Number of vertices, edges, etc : 98, 392, 98
Order of s0s1s2 : 14
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,8}*784a
   196-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 8,48)( 9,49)(10,43)(11,44)(12,45)(13,46)(14,47)(15,39)(16,40)(17,41)
(18,42)(19,36)(20,37)(21,38)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35)(28,29)
(57,97)(58,98)(59,92)(60,93)(61,94)(62,95)(63,96)(64,88)(65,89)(66,90)(67,91)
(68,85)(69,86)(70,87)(71,79)(72,80)(73,81)(74,82)(75,83)(76,84)(77,78);;
s1 := ( 2,19)( 3,30)( 4,48)( 5,10)( 6,28)( 7,39)( 8,25)( 9,36)(11,16)(12,34)
(13,45)(15,49)(17,22)(18,40)(21,31)(23,35)(24,46)(27,37)(29,41)(33,43)(42,47)
(51,68)(52,79)(53,97)(54,59)(55,77)(56,88)(57,74)(58,85)(60,65)(61,83)(62,94)
(64,98)(66,71)(67,89)(70,80)(72,84)(73,95)(76,86)(78,90)(82,92)(91,96);;
s2 := ( 1,51)( 2,50)( 3,56)( 4,55)( 5,54)( 6,53)( 7,52)( 8,60)( 9,59)(10,58)
(11,57)(12,63)(13,62)(14,61)(15,69)(16,68)(17,67)(18,66)(19,65)(20,64)(21,70)
(22,71)(23,77)(24,76)(25,75)(26,74)(27,73)(28,72)(29,80)(30,79)(31,78)(32,84)
(33,83)(34,82)(35,81)(36,89)(37,88)(38,87)(39,86)(40,85)(41,91)(42,90)(43,98)
(44,97)(45,96)(46,95)(47,94)(48,93)(49,92);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(98)!( 8,48)( 9,49)(10,43)(11,44)(12,45)(13,46)(14,47)(15,39)(16,40)
(17,41)(18,42)(19,36)(20,37)(21,38)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35)
(28,29)(57,97)(58,98)(59,92)(60,93)(61,94)(62,95)(63,96)(64,88)(65,89)(66,90)
(67,91)(68,85)(69,86)(70,87)(71,79)(72,80)(73,81)(74,82)(75,83)(76,84)(77,78);
s1 := Sym(98)!( 2,19)( 3,30)( 4,48)( 5,10)( 6,28)( 7,39)( 8,25)( 9,36)(11,16)
(12,34)(13,45)(15,49)(17,22)(18,40)(21,31)(23,35)(24,46)(27,37)(29,41)(33,43)
(42,47)(51,68)(52,79)(53,97)(54,59)(55,77)(56,88)(57,74)(58,85)(60,65)(61,83)
(62,94)(64,98)(66,71)(67,89)(70,80)(72,84)(73,95)(76,86)(78,90)(82,92)(91,96);
s2 := Sym(98)!( 1,51)( 2,50)( 3,56)( 4,55)( 5,54)( 6,53)( 7,52)( 8,60)( 9,59)
(10,58)(11,57)(12,63)(13,62)(14,61)(15,69)(16,68)(17,67)(18,66)(19,65)(20,64)
(21,70)(22,71)(23,77)(24,76)(25,75)(26,74)(27,73)(28,72)(29,80)(30,79)(31,78)
(32,84)(33,83)(34,82)(35,81)(36,89)(37,88)(38,87)(39,86)(40,85)(41,91)(42,90)
(43,98)(44,97)(45,96)(46,95)(47,94)(48,93)(49,92);
poly := sub<Sym(98)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope