Questions?
See the FAQ
or other info.

Polytope of Type {2,2,2,99}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,99}*1584
if this polytope has a name.
Group : SmallGroup(1584,373)
Rank : 5
Schlafli Type : {2,2,2,99}
Number of vertices, edges, etc : 2, 2, 2, 99, 99
Order of s0s1s2s3s4 : 198
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,2,33}*528
   9-fold quotients : {2,2,2,11}*176
   11-fold quotients : {2,2,2,9}*144
   33-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (  8,  9)( 10, 11)( 12, 13)( 14, 15)( 16, 17)( 18, 19)( 20, 21)( 22, 23)
( 24, 25)( 26, 27)( 28, 29)( 30, 31)( 32, 33)( 34, 35)( 36, 37)( 38, 39)
( 40, 41)( 42, 43)( 44, 45)( 46, 47)( 48, 49)( 50, 51)( 52, 53)( 54, 55)
( 56, 57)( 58, 59)( 60, 61)( 62, 63)( 64, 65)( 66, 67)( 68, 69)( 70, 71)
( 72, 73)( 74, 75)( 76, 77)( 78, 79)( 80, 81)( 82, 83)( 84, 85)( 86, 87)
( 88, 89)( 90, 91)( 92, 93)( 94, 95)( 96, 97)( 98, 99)(100,101)(102,103)
(104,105);;
s4 := (  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)( 17, 18)( 19, 20)( 21, 22)
( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)( 33, 34)( 35, 36)( 37, 38)
( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49, 50)( 51, 52)( 53, 54)
( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)( 65, 66)( 67, 68)( 69, 70)
( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)( 81, 82)( 83, 84)( 85, 86)
( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)( 97, 98)( 99,100)(101,102)
(103,104);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(105)!(1,2);
s1 := Sym(105)!(3,4);
s2 := Sym(105)!(5,6);
s3 := Sym(105)!(  8,  9)( 10, 11)( 12, 13)( 14, 15)( 16, 17)( 18, 19)( 20, 21)
( 22, 23)( 24, 25)( 26, 27)( 28, 29)( 30, 31)( 32, 33)( 34, 35)( 36, 37)
( 38, 39)( 40, 41)( 42, 43)( 44, 45)( 46, 47)( 48, 49)( 50, 51)( 52, 53)
( 54, 55)( 56, 57)( 58, 59)( 60, 61)( 62, 63)( 64, 65)( 66, 67)( 68, 69)
( 70, 71)( 72, 73)( 74, 75)( 76, 77)( 78, 79)( 80, 81)( 82, 83)( 84, 85)
( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 94, 95)( 96, 97)( 98, 99)(100,101)
(102,103)(104,105);
s4 := Sym(105)!(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)( 17, 18)( 19, 20)
( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)( 33, 34)( 35, 36)
( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49, 50)( 51, 52)
( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)( 65, 66)( 67, 68)
( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)( 81, 82)( 83, 84)
( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)( 97, 98)( 99,100)
(101,102)(103,104);
poly := sub<Sym(105)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope