Questions?
See the FAQ
or other info.

Polytope of Type {3,6,22,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,22,2}*1584
if this polytope has a name.
Group : SmallGroup(1584,675)
Rank : 5
Schlafli Type : {3,6,22,2}
Number of vertices, edges, etc : 3, 9, 66, 22, 2
Order of s0s1s2s3s4 : 66
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,22,2}*528
   6-fold quotients : {3,2,11,2}*264
   11-fold quotients : {3,6,2,2}*144
   33-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)
(22,33)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)
(44,77)(45,89)(46,90)(47,91)(48,92)(49,93)(50,94)(51,95)(52,96)(53,97)(54,98)
(55,99)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)
(66,88);;
s1 := ( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)
(11,55)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)
(22,44)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)
(33,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)
(77,88);;
s2 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(12,23)(13,33)(14,32)(15,31)(16,30)
(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(35,44)(36,43)(37,42)(38,41)(39,40)
(45,56)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)
(68,77)(69,76)(70,75)(71,74)(72,73)(78,89)(79,99)(80,98)(81,97)(82,96)(83,95)
(84,94)(85,93)(86,92)(87,91)(88,90);;
s3 := ( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)(17,19)
(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)(45,46)
(47,55)(48,54)(49,53)(50,52)(56,57)(58,66)(59,65)(60,64)(61,63)(67,68)(69,77)
(70,76)(71,75)(72,74)(78,79)(80,88)(81,87)(82,86)(83,85)(89,90)(91,99)(92,98)
(93,97)(94,96);;
s4 := (100,101);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(101)!(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)
(21,32)(22,33)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)
(43,76)(44,77)(45,89)(46,90)(47,91)(48,92)(49,93)(50,94)(51,95)(52,96)(53,97)
(54,98)(55,99)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)
(65,87)(66,88);
s1 := Sym(101)!( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)
(10,54)(11,55)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)
(21,43)(22,44)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)
(32,65)(33,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)
(76,87)(77,88);
s2 := Sym(101)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(12,23)(13,33)(14,32)(15,31)
(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(35,44)(36,43)(37,42)(38,41)
(39,40)(45,56)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)
(55,57)(68,77)(69,76)(70,75)(71,74)(72,73)(78,89)(79,99)(80,98)(81,97)(82,96)
(83,95)(84,94)(85,93)(86,92)(87,91)(88,90);
s3 := Sym(101)!( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)
(17,19)(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)
(45,46)(47,55)(48,54)(49,53)(50,52)(56,57)(58,66)(59,65)(60,64)(61,63)(67,68)
(69,77)(70,76)(71,75)(72,74)(78,79)(80,88)(81,87)(82,86)(83,85)(89,90)(91,99)
(92,98)(93,97)(94,96);
s4 := Sym(101)!(100,101);
poly := sub<Sym(101)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope