Questions?
See the FAQ
or other info.

Polytope of Type {66,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {66,6,2}*1584b
if this polytope has a name.
Group : SmallGroup(1584,688)
Rank : 4
Schlafli Type : {66,6,2}
Number of vertices, edges, etc : 66, 198, 6, 2
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {22,6,2}*528, {66,2,2}*528
   6-fold quotients : {33,2,2}*264
   9-fold quotients : {22,2,2}*176
   11-fold quotients : {6,6,2}*144a
   18-fold quotients : {11,2,2}*88
   33-fold quotients : {2,6,2}*48, {6,2,2}*48
   66-fold quotients : {2,3,2}*24, {3,2,2}*24
   99-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 23)( 13, 33)( 14, 32)
( 15, 31)( 16, 30)( 17, 29)( 18, 28)( 19, 27)( 20, 26)( 21, 25)( 22, 24)
( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 45, 56)( 46, 66)( 47, 65)
( 48, 64)( 49, 63)( 50, 62)( 51, 61)( 52, 60)( 53, 59)( 54, 58)( 55, 57)
( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 78, 89)( 79, 99)( 80, 98)
( 81, 97)( 82, 96)( 83, 95)( 84, 94)( 85, 93)( 86, 92)( 87, 91)( 88, 90)
(101,110)(102,109)(103,108)(104,107)(105,106)(111,122)(112,132)(113,131)
(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)(121,123)
(134,143)(135,142)(136,141)(137,140)(138,139)(144,155)(145,165)(146,164)
(147,163)(148,162)(149,161)(150,160)(151,159)(152,158)(153,157)(154,156)
(167,176)(168,175)(169,174)(170,173)(171,172)(177,188)(178,198)(179,197)
(180,196)(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)(187,189);;
s1 := (  1, 13)(  2, 12)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)(  8, 17)
(  9, 16)( 10, 15)( 11, 14)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 34, 79)( 35, 78)( 36, 88)( 37, 87)( 38, 86)( 39, 85)( 40, 84)( 41, 83)
( 42, 82)( 43, 81)( 44, 80)( 45, 68)( 46, 67)( 47, 77)( 48, 76)( 49, 75)
( 50, 74)( 51, 73)( 52, 72)( 53, 71)( 54, 70)( 55, 69)( 56, 90)( 57, 89)
( 58, 99)( 59, 98)( 60, 97)( 61, 96)( 62, 95)( 63, 94)( 64, 93)( 65, 92)
( 66, 91)(100,112)(101,111)(102,121)(103,120)(104,119)(105,118)(106,117)
(107,116)(108,115)(109,114)(110,113)(122,123)(124,132)(125,131)(126,130)
(127,129)(133,178)(134,177)(135,187)(136,186)(137,185)(138,184)(139,183)
(140,182)(141,181)(142,180)(143,179)(144,167)(145,166)(146,176)(147,175)
(148,174)(149,173)(150,172)(151,171)(152,170)(153,169)(154,168)(155,189)
(156,188)(157,198)(158,197)(159,196)(160,195)(161,194)(162,193)(163,192)
(164,191)(165,190);;
s2 := (  1,133)(  2,134)(  3,135)(  4,136)(  5,137)(  6,138)(  7,139)(  8,140)
(  9,141)( 10,142)( 11,143)( 12,144)( 13,145)( 14,146)( 15,147)( 16,148)
( 17,149)( 18,150)( 19,151)( 20,152)( 21,153)( 22,154)( 23,155)( 24,156)
( 25,157)( 26,158)( 27,159)( 28,160)( 29,161)( 30,162)( 31,163)( 32,164)
( 33,165)( 34,100)( 35,101)( 36,102)( 37,103)( 38,104)( 39,105)( 40,106)
( 41,107)( 42,108)( 43,109)( 44,110)( 45,111)( 46,112)( 47,113)( 48,114)
( 49,115)( 50,116)( 51,117)( 52,118)( 53,119)( 54,120)( 55,121)( 56,122)
( 57,123)( 58,124)( 59,125)( 60,126)( 61,127)( 62,128)( 63,129)( 64,130)
( 65,131)( 66,132)( 67,166)( 68,167)( 69,168)( 70,169)( 71,170)( 72,171)
( 73,172)( 74,173)( 75,174)( 76,175)( 77,176)( 78,177)( 79,178)( 80,179)
( 81,180)( 82,181)( 83,182)( 84,183)( 85,184)( 86,185)( 87,186)( 88,187)
( 89,188)( 90,189)( 91,190)( 92,191)( 93,192)( 94,193)( 95,194)( 96,195)
( 97,196)( 98,197)( 99,198);;
s3 := (199,200);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(200)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 23)( 13, 33)
( 14, 32)( 15, 31)( 16, 30)( 17, 29)( 18, 28)( 19, 27)( 20, 26)( 21, 25)
( 22, 24)( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 45, 56)( 46, 66)
( 47, 65)( 48, 64)( 49, 63)( 50, 62)( 51, 61)( 52, 60)( 53, 59)( 54, 58)
( 55, 57)( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 78, 89)( 79, 99)
( 80, 98)( 81, 97)( 82, 96)( 83, 95)( 84, 94)( 85, 93)( 86, 92)( 87, 91)
( 88, 90)(101,110)(102,109)(103,108)(104,107)(105,106)(111,122)(112,132)
(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)
(121,123)(134,143)(135,142)(136,141)(137,140)(138,139)(144,155)(145,165)
(146,164)(147,163)(148,162)(149,161)(150,160)(151,159)(152,158)(153,157)
(154,156)(167,176)(168,175)(169,174)(170,173)(171,172)(177,188)(178,198)
(179,197)(180,196)(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)
(187,189);
s1 := Sym(200)!(  1, 13)(  2, 12)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)
(  8, 17)(  9, 16)( 10, 15)( 11, 14)( 23, 24)( 25, 33)( 26, 32)( 27, 31)
( 28, 30)( 34, 79)( 35, 78)( 36, 88)( 37, 87)( 38, 86)( 39, 85)( 40, 84)
( 41, 83)( 42, 82)( 43, 81)( 44, 80)( 45, 68)( 46, 67)( 47, 77)( 48, 76)
( 49, 75)( 50, 74)( 51, 73)( 52, 72)( 53, 71)( 54, 70)( 55, 69)( 56, 90)
( 57, 89)( 58, 99)( 59, 98)( 60, 97)( 61, 96)( 62, 95)( 63, 94)( 64, 93)
( 65, 92)( 66, 91)(100,112)(101,111)(102,121)(103,120)(104,119)(105,118)
(106,117)(107,116)(108,115)(109,114)(110,113)(122,123)(124,132)(125,131)
(126,130)(127,129)(133,178)(134,177)(135,187)(136,186)(137,185)(138,184)
(139,183)(140,182)(141,181)(142,180)(143,179)(144,167)(145,166)(146,176)
(147,175)(148,174)(149,173)(150,172)(151,171)(152,170)(153,169)(154,168)
(155,189)(156,188)(157,198)(158,197)(159,196)(160,195)(161,194)(162,193)
(163,192)(164,191)(165,190);
s2 := Sym(200)!(  1,133)(  2,134)(  3,135)(  4,136)(  5,137)(  6,138)(  7,139)
(  8,140)(  9,141)( 10,142)( 11,143)( 12,144)( 13,145)( 14,146)( 15,147)
( 16,148)( 17,149)( 18,150)( 19,151)( 20,152)( 21,153)( 22,154)( 23,155)
( 24,156)( 25,157)( 26,158)( 27,159)( 28,160)( 29,161)( 30,162)( 31,163)
( 32,164)( 33,165)( 34,100)( 35,101)( 36,102)( 37,103)( 38,104)( 39,105)
( 40,106)( 41,107)( 42,108)( 43,109)( 44,110)( 45,111)( 46,112)( 47,113)
( 48,114)( 49,115)( 50,116)( 51,117)( 52,118)( 53,119)( 54,120)( 55,121)
( 56,122)( 57,123)( 58,124)( 59,125)( 60,126)( 61,127)( 62,128)( 63,129)
( 64,130)( 65,131)( 66,132)( 67,166)( 68,167)( 69,168)( 70,169)( 71,170)
( 72,171)( 73,172)( 74,173)( 75,174)( 76,175)( 77,176)( 78,177)( 79,178)
( 80,179)( 81,180)( 82,181)( 83,182)( 84,183)( 85,184)( 86,185)( 87,186)
( 88,187)( 89,188)( 90,189)( 91,190)( 92,191)( 93,192)( 94,193)( 95,194)
( 96,195)( 97,196)( 98,197)( 99,198);
s3 := Sym(200)!(199,200);
poly := sub<Sym(200)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope