Questions?
See the FAQ
or other info.

Polytope of Type {2,10,10,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,10,4}*1600c
if this polytope has a name.
Group : SmallGroup(1600,10205)
Rank : 5
Schlafli Type : {2,10,10,4}
Number of vertices, edges, etc : 2, 10, 50, 20, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,5,10,4}*800, {2,10,10,2}*800c
   4-fold quotients : {2,5,10,2}*400
   5-fold quotients : {2,10,2,4}*320
   10-fold quotients : {2,5,2,4}*160, {2,10,2,2}*160
   20-fold quotients : {2,5,2,2}*80
   25-fold quotients : {2,2,2,4}*64
   50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  7)(  5,  6)(  8, 23)(  9, 27)( 10, 26)( 11, 25)( 12, 24)( 13, 18)
( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 29, 32)( 30, 31)( 33, 48)( 34, 52)
( 35, 51)( 36, 50)( 37, 49)( 38, 43)( 39, 47)( 40, 46)( 41, 45)( 42, 44)
( 54, 57)( 55, 56)( 58, 73)( 59, 77)( 60, 76)( 61, 75)( 62, 74)( 63, 68)
( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 79, 82)( 80, 81)( 83, 98)( 84,102)
( 85,101)( 86,100)( 87, 99)( 88, 93)( 89, 97)( 90, 96)( 91, 95)( 92, 94)
(104,107)(105,106)(108,123)(109,127)(110,126)(111,125)(112,124)(113,118)
(114,122)(115,121)(116,120)(117,119)(129,132)(130,131)(133,148)(134,152)
(135,151)(136,150)(137,149)(138,143)(139,147)(140,146)(141,145)(142,144)
(154,157)(155,156)(158,173)(159,177)(160,176)(161,175)(162,174)(163,168)
(164,172)(165,171)(166,170)(167,169)(179,182)(180,181)(183,198)(184,202)
(185,201)(186,200)(187,199)(188,193)(189,197)(190,196)(191,195)(192,194);;
s2 := (  3,109)(  4,108)(  5,112)(  6,111)(  7,110)(  8,104)(  9,103)( 10,107)
( 11,106)( 12,105)( 13,124)( 14,123)( 15,127)( 16,126)( 17,125)( 18,119)
( 19,118)( 20,122)( 21,121)( 22,120)( 23,114)( 24,113)( 25,117)( 26,116)
( 27,115)( 28,134)( 29,133)( 30,137)( 31,136)( 32,135)( 33,129)( 34,128)
( 35,132)( 36,131)( 37,130)( 38,149)( 39,148)( 40,152)( 41,151)( 42,150)
( 43,144)( 44,143)( 45,147)( 46,146)( 47,145)( 48,139)( 49,138)( 50,142)
( 51,141)( 52,140)( 53,159)( 54,158)( 55,162)( 56,161)( 57,160)( 58,154)
( 59,153)( 60,157)( 61,156)( 62,155)( 63,174)( 64,173)( 65,177)( 66,176)
( 67,175)( 68,169)( 69,168)( 70,172)( 71,171)( 72,170)( 73,164)( 74,163)
( 75,167)( 76,166)( 77,165)( 78,184)( 79,183)( 80,187)( 81,186)( 82,185)
( 83,179)( 84,178)( 85,182)( 86,181)( 87,180)( 88,199)( 89,198)( 90,202)
( 91,201)( 92,200)( 93,194)( 94,193)( 95,197)( 96,196)( 97,195)( 98,189)
( 99,188)(100,192)(101,191)(102,190);;
s3 := (  4,  7)(  5,  6)(  9, 12)( 10, 11)( 14, 17)( 15, 16)( 19, 22)( 20, 21)
( 24, 27)( 25, 26)( 29, 32)( 30, 31)( 34, 37)( 35, 36)( 39, 42)( 40, 41)
( 44, 47)( 45, 46)( 49, 52)( 50, 51)( 53, 78)( 54, 82)( 55, 81)( 56, 80)
( 57, 79)( 58, 83)( 59, 87)( 60, 86)( 61, 85)( 62, 84)( 63, 88)( 64, 92)
( 65, 91)( 66, 90)( 67, 89)( 68, 93)( 69, 97)( 70, 96)( 71, 95)( 72, 94)
( 73, 98)( 74,102)( 75,101)( 76,100)( 77, 99)(104,107)(105,106)(109,112)
(110,111)(114,117)(115,116)(119,122)(120,121)(124,127)(125,126)(129,132)
(130,131)(134,137)(135,136)(139,142)(140,141)(144,147)(145,146)(149,152)
(150,151)(153,178)(154,182)(155,181)(156,180)(157,179)(158,183)(159,187)
(160,186)(161,185)(162,184)(163,188)(164,192)(165,191)(166,190)(167,189)
(168,193)(169,197)(170,196)(171,195)(172,194)(173,198)(174,202)(175,201)
(176,200)(177,199);;
s4 := (  3, 53)(  4, 54)(  5, 55)(  6, 56)(  7, 57)(  8, 58)(  9, 59)( 10, 60)
( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)( 16, 66)( 17, 67)( 18, 68)
( 19, 69)( 20, 70)( 21, 71)( 22, 72)( 23, 73)( 24, 74)( 25, 75)( 26, 76)
( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)( 32, 82)( 33, 83)( 34, 84)
( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)( 40, 90)( 41, 91)( 42, 92)
( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)( 48, 98)( 49, 99)( 50,100)
( 51,101)( 52,102)(103,153)(104,154)(105,155)(106,156)(107,157)(108,158)
(109,159)(110,160)(111,161)(112,162)(113,163)(114,164)(115,165)(116,166)
(117,167)(118,168)(119,169)(120,170)(121,171)(122,172)(123,173)(124,174)
(125,175)(126,176)(127,177)(128,178)(129,179)(130,180)(131,181)(132,182)
(133,183)(134,184)(135,185)(136,186)(137,187)(138,188)(139,189)(140,190)
(141,191)(142,192)(143,193)(144,194)(145,195)(146,196)(147,197)(148,198)
(149,199)(150,200)(151,201)(152,202);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(202)!(1,2);
s1 := Sym(202)!(  4,  7)(  5,  6)(  8, 23)(  9, 27)( 10, 26)( 11, 25)( 12, 24)
( 13, 18)( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 29, 32)( 30, 31)( 33, 48)
( 34, 52)( 35, 51)( 36, 50)( 37, 49)( 38, 43)( 39, 47)( 40, 46)( 41, 45)
( 42, 44)( 54, 57)( 55, 56)( 58, 73)( 59, 77)( 60, 76)( 61, 75)( 62, 74)
( 63, 68)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 79, 82)( 80, 81)( 83, 98)
( 84,102)( 85,101)( 86,100)( 87, 99)( 88, 93)( 89, 97)( 90, 96)( 91, 95)
( 92, 94)(104,107)(105,106)(108,123)(109,127)(110,126)(111,125)(112,124)
(113,118)(114,122)(115,121)(116,120)(117,119)(129,132)(130,131)(133,148)
(134,152)(135,151)(136,150)(137,149)(138,143)(139,147)(140,146)(141,145)
(142,144)(154,157)(155,156)(158,173)(159,177)(160,176)(161,175)(162,174)
(163,168)(164,172)(165,171)(166,170)(167,169)(179,182)(180,181)(183,198)
(184,202)(185,201)(186,200)(187,199)(188,193)(189,197)(190,196)(191,195)
(192,194);
s2 := Sym(202)!(  3,109)(  4,108)(  5,112)(  6,111)(  7,110)(  8,104)(  9,103)
( 10,107)( 11,106)( 12,105)( 13,124)( 14,123)( 15,127)( 16,126)( 17,125)
( 18,119)( 19,118)( 20,122)( 21,121)( 22,120)( 23,114)( 24,113)( 25,117)
( 26,116)( 27,115)( 28,134)( 29,133)( 30,137)( 31,136)( 32,135)( 33,129)
( 34,128)( 35,132)( 36,131)( 37,130)( 38,149)( 39,148)( 40,152)( 41,151)
( 42,150)( 43,144)( 44,143)( 45,147)( 46,146)( 47,145)( 48,139)( 49,138)
( 50,142)( 51,141)( 52,140)( 53,159)( 54,158)( 55,162)( 56,161)( 57,160)
( 58,154)( 59,153)( 60,157)( 61,156)( 62,155)( 63,174)( 64,173)( 65,177)
( 66,176)( 67,175)( 68,169)( 69,168)( 70,172)( 71,171)( 72,170)( 73,164)
( 74,163)( 75,167)( 76,166)( 77,165)( 78,184)( 79,183)( 80,187)( 81,186)
( 82,185)( 83,179)( 84,178)( 85,182)( 86,181)( 87,180)( 88,199)( 89,198)
( 90,202)( 91,201)( 92,200)( 93,194)( 94,193)( 95,197)( 96,196)( 97,195)
( 98,189)( 99,188)(100,192)(101,191)(102,190);
s3 := Sym(202)!(  4,  7)(  5,  6)(  9, 12)( 10, 11)( 14, 17)( 15, 16)( 19, 22)
( 20, 21)( 24, 27)( 25, 26)( 29, 32)( 30, 31)( 34, 37)( 35, 36)( 39, 42)
( 40, 41)( 44, 47)( 45, 46)( 49, 52)( 50, 51)( 53, 78)( 54, 82)( 55, 81)
( 56, 80)( 57, 79)( 58, 83)( 59, 87)( 60, 86)( 61, 85)( 62, 84)( 63, 88)
( 64, 92)( 65, 91)( 66, 90)( 67, 89)( 68, 93)( 69, 97)( 70, 96)( 71, 95)
( 72, 94)( 73, 98)( 74,102)( 75,101)( 76,100)( 77, 99)(104,107)(105,106)
(109,112)(110,111)(114,117)(115,116)(119,122)(120,121)(124,127)(125,126)
(129,132)(130,131)(134,137)(135,136)(139,142)(140,141)(144,147)(145,146)
(149,152)(150,151)(153,178)(154,182)(155,181)(156,180)(157,179)(158,183)
(159,187)(160,186)(161,185)(162,184)(163,188)(164,192)(165,191)(166,190)
(167,189)(168,193)(169,197)(170,196)(171,195)(172,194)(173,198)(174,202)
(175,201)(176,200)(177,199);
s4 := Sym(202)!(  3, 53)(  4, 54)(  5, 55)(  6, 56)(  7, 57)(  8, 58)(  9, 59)
( 10, 60)( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)( 16, 66)( 17, 67)
( 18, 68)( 19, 69)( 20, 70)( 21, 71)( 22, 72)( 23, 73)( 24, 74)( 25, 75)
( 26, 76)( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)( 32, 82)( 33, 83)
( 34, 84)( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)( 40, 90)( 41, 91)
( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)( 48, 98)( 49, 99)
( 50,100)( 51,101)( 52,102)(103,153)(104,154)(105,155)(106,156)(107,157)
(108,158)(109,159)(110,160)(111,161)(112,162)(113,163)(114,164)(115,165)
(116,166)(117,167)(118,168)(119,169)(120,170)(121,171)(122,172)(123,173)
(124,174)(125,175)(126,176)(127,177)(128,178)(129,179)(130,180)(131,181)
(132,182)(133,183)(134,184)(135,185)(136,186)(137,187)(138,188)(139,189)
(140,190)(141,191)(142,192)(143,193)(144,194)(145,195)(146,196)(147,197)
(148,198)(149,199)(150,200)(151,201)(152,202);
poly := sub<Sym(202)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope