Questions?
See the FAQ
or other info.

Polytope of Type {2,2,10,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,10,4}*1600
if this polytope has a name.
Group : SmallGroup(1600,10271)
Rank : 5
Schlafli Type : {2,2,10,4}
Number of vertices, edges, etc : 2, 2, 50, 100, 20
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,10,4}*800
   25-fold quotients : {2,2,2,4}*64
   50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  5, 30)(  6, 34)(  7, 33)(  8, 32)(  9, 31)( 10, 50)( 11, 54)( 12, 53)
( 13, 52)( 14, 51)( 15, 45)( 16, 49)( 17, 48)( 18, 47)( 19, 46)( 20, 40)
( 21, 44)( 22, 43)( 23, 42)( 24, 41)( 25, 35)( 26, 39)( 27, 38)( 28, 37)
( 29, 36)( 55, 80)( 56, 84)( 57, 83)( 58, 82)( 59, 81)( 60,100)( 61,104)
( 62,103)( 63,102)( 64,101)( 65, 95)( 66, 99)( 67, 98)( 68, 97)( 69, 96)
( 70, 90)( 71, 94)( 72, 93)( 73, 92)( 74, 91)( 75, 85)( 76, 89)( 77, 88)
( 78, 87)( 79, 86);;
s3 := (  5, 12)(  6, 22)(  8, 17)(  9, 27)( 11, 20)( 13, 15)( 14, 25)( 16, 23)
( 19, 28)( 24, 26)( 30, 37)( 31, 47)( 33, 42)( 34, 52)( 36, 45)( 38, 40)
( 39, 50)( 41, 48)( 44, 53)( 49, 51)( 55, 62)( 56, 72)( 58, 67)( 59, 77)
( 61, 70)( 63, 65)( 64, 75)( 66, 73)( 69, 78)( 74, 76)( 80, 87)( 81, 97)
( 83, 92)( 84,102)( 86, 95)( 88, 90)( 89,100)( 91, 98)( 94,103)( 99,101);;
s4 := (  5, 55)(  6, 60)(  7, 65)(  8, 70)(  9, 75)( 10, 56)( 11, 61)( 12, 66)
( 13, 71)( 14, 76)( 15, 57)( 16, 62)( 17, 67)( 18, 72)( 19, 77)( 20, 58)
( 21, 63)( 22, 68)( 23, 73)( 24, 78)( 25, 59)( 26, 64)( 27, 69)( 28, 74)
( 29, 79)( 30, 80)( 31, 85)( 32, 90)( 33, 95)( 34,100)( 35, 81)( 36, 86)
( 37, 91)( 38, 96)( 39,101)( 40, 82)( 41, 87)( 42, 92)( 43, 97)( 44,102)
( 45, 83)( 46, 88)( 47, 93)( 48, 98)( 49,103)( 50, 84)( 51, 89)( 52, 94)
( 53, 99)( 54,104);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(104)!(1,2);
s1 := Sym(104)!(3,4);
s2 := Sym(104)!(  5, 30)(  6, 34)(  7, 33)(  8, 32)(  9, 31)( 10, 50)( 11, 54)
( 12, 53)( 13, 52)( 14, 51)( 15, 45)( 16, 49)( 17, 48)( 18, 47)( 19, 46)
( 20, 40)( 21, 44)( 22, 43)( 23, 42)( 24, 41)( 25, 35)( 26, 39)( 27, 38)
( 28, 37)( 29, 36)( 55, 80)( 56, 84)( 57, 83)( 58, 82)( 59, 81)( 60,100)
( 61,104)( 62,103)( 63,102)( 64,101)( 65, 95)( 66, 99)( 67, 98)( 68, 97)
( 69, 96)( 70, 90)( 71, 94)( 72, 93)( 73, 92)( 74, 91)( 75, 85)( 76, 89)
( 77, 88)( 78, 87)( 79, 86);
s3 := Sym(104)!(  5, 12)(  6, 22)(  8, 17)(  9, 27)( 11, 20)( 13, 15)( 14, 25)
( 16, 23)( 19, 28)( 24, 26)( 30, 37)( 31, 47)( 33, 42)( 34, 52)( 36, 45)
( 38, 40)( 39, 50)( 41, 48)( 44, 53)( 49, 51)( 55, 62)( 56, 72)( 58, 67)
( 59, 77)( 61, 70)( 63, 65)( 64, 75)( 66, 73)( 69, 78)( 74, 76)( 80, 87)
( 81, 97)( 83, 92)( 84,102)( 86, 95)( 88, 90)( 89,100)( 91, 98)( 94,103)
( 99,101);
s4 := Sym(104)!(  5, 55)(  6, 60)(  7, 65)(  8, 70)(  9, 75)( 10, 56)( 11, 61)
( 12, 66)( 13, 71)( 14, 76)( 15, 57)( 16, 62)( 17, 67)( 18, 72)( 19, 77)
( 20, 58)( 21, 63)( 22, 68)( 23, 73)( 24, 78)( 25, 59)( 26, 64)( 27, 69)
( 28, 74)( 29, 79)( 30, 80)( 31, 85)( 32, 90)( 33, 95)( 34,100)( 35, 81)
( 36, 86)( 37, 91)( 38, 96)( 39,101)( 40, 82)( 41, 87)( 42, 92)( 43, 97)
( 44,102)( 45, 83)( 46, 88)( 47, 93)( 48, 98)( 49,103)( 50, 84)( 51, 89)
( 52, 94)( 53, 99)( 54,104);
poly := sub<Sym(104)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope