Questions?
See the FAQ
or other info.

Polytope of Type {4,4,50}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,50}*1600
Also Known As : {{4,4|2},{4,50|2}}. if this polytope has another name.
Group : SmallGroup(1600,1264)
Rank : 4
Schlafli Type : {4,4,50}
Number of vertices, edges, etc : 4, 8, 100, 50
Order of s0s1s2s3 : 100
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,50}*800, {4,2,50}*800
   4-fold quotients : {4,2,25}*400, {2,2,50}*400
   5-fold quotients : {4,4,10}*320
   8-fold quotients : {2,2,25}*200
   10-fold quotients : {2,4,10}*160, {4,2,10}*160
   20-fold quotients : {4,2,5}*80, {2,2,10}*80
   25-fold quotients : {4,4,2}*64
   40-fold quotients : {2,2,5}*40
   50-fold quotients : {2,4,2}*32, {4,2,2}*32
   100-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (101,126)(102,127)(103,128)(104,129)(105,130)(106,131)(107,132)(108,133)
(109,134)(110,135)(111,136)(112,137)(113,138)(114,139)(115,140)(116,141)
(117,142)(118,143)(119,144)(120,145)(121,146)(122,147)(123,148)(124,149)
(125,150)(151,176)(152,177)(153,178)(154,179)(155,180)(156,181)(157,182)
(158,183)(159,184)(160,185)(161,186)(162,187)(163,188)(164,189)(165,190)
(166,191)(167,192)(168,193)(169,194)(170,195)(171,196)(172,197)(173,198)
(174,199)(175,200);;
s1 := (  1,101)(  2,102)(  3,103)(  4,104)(  5,105)(  6,106)(  7,107)(  8,108)
(  9,109)( 10,110)( 11,111)( 12,112)( 13,113)( 14,114)( 15,115)( 16,116)
( 17,117)( 18,118)( 19,119)( 20,120)( 21,121)( 22,122)( 23,123)( 24,124)
( 25,125)( 26,126)( 27,127)( 28,128)( 29,129)( 30,130)( 31,131)( 32,132)
( 33,133)( 34,134)( 35,135)( 36,136)( 37,137)( 38,138)( 39,139)( 40,140)
( 41,141)( 42,142)( 43,143)( 44,144)( 45,145)( 46,146)( 47,147)( 48,148)
( 49,149)( 50,150)( 51,151)( 52,152)( 53,153)( 54,154)( 55,155)( 56,156)
( 57,157)( 58,158)( 59,159)( 60,160)( 61,161)( 62,162)( 63,163)( 64,164)
( 65,165)( 66,166)( 67,167)( 68,168)( 69,169)( 70,170)( 71,171)( 72,172)
( 73,173)( 74,174)( 75,175)( 76,176)( 77,177)( 78,178)( 79,179)( 80,180)
( 81,181)( 82,182)( 83,183)( 84,184)( 85,185)( 86,186)( 87,187)( 88,188)
( 89,189)( 90,190)( 91,191)( 92,192)( 93,193)( 94,194)( 95,195)( 96,196)
( 97,197)( 98,198)( 99,199)(100,200);;
s2 := (  2,  5)(  3,  4)(  6, 25)(  7, 24)(  8, 23)(  9, 22)( 10, 21)( 11, 20)
( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 27, 30)( 28, 29)( 31, 50)( 32, 49)
( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)( 40, 41)
( 52, 55)( 53, 54)( 56, 75)( 57, 74)( 58, 73)( 59, 72)( 60, 71)( 61, 70)
( 62, 69)( 63, 68)( 64, 67)( 65, 66)( 77, 80)( 78, 79)( 81,100)( 82, 99)
( 83, 98)( 84, 97)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)( 90, 91)
(101,151)(102,155)(103,154)(104,153)(105,152)(106,175)(107,174)(108,173)
(109,172)(110,171)(111,170)(112,169)(113,168)(114,167)(115,166)(116,165)
(117,164)(118,163)(119,162)(120,161)(121,160)(122,159)(123,158)(124,157)
(125,156)(126,176)(127,180)(128,179)(129,178)(130,177)(131,200)(132,199)
(133,198)(134,197)(135,196)(136,195)(137,194)(138,193)(139,192)(140,191)
(141,190)(142,189)(143,188)(144,187)(145,186)(146,185)(147,184)(148,183)
(149,182)(150,181);;
s3 := (  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 25)( 12, 24)( 13, 23)
( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 26, 31)( 27, 35)( 28, 34)( 29, 33)
( 30, 32)( 36, 50)( 37, 49)( 38, 48)( 39, 47)( 40, 46)( 41, 45)( 42, 44)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 75)( 62, 74)( 63, 73)
( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 76, 81)( 77, 85)( 78, 84)( 79, 83)
( 80, 82)( 86,100)( 87, 99)( 88, 98)( 89, 97)( 90, 96)( 91, 95)( 92, 94)
(101,106)(102,110)(103,109)(104,108)(105,107)(111,125)(112,124)(113,123)
(114,122)(115,121)(116,120)(117,119)(126,131)(127,135)(128,134)(129,133)
(130,132)(136,150)(137,149)(138,148)(139,147)(140,146)(141,145)(142,144)
(151,156)(152,160)(153,159)(154,158)(155,157)(161,175)(162,174)(163,173)
(164,172)(165,171)(166,170)(167,169)(176,181)(177,185)(178,184)(179,183)
(180,182)(186,200)(187,199)(188,198)(189,197)(190,196)(191,195)(192,194);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(200)!(101,126)(102,127)(103,128)(104,129)(105,130)(106,131)(107,132)
(108,133)(109,134)(110,135)(111,136)(112,137)(113,138)(114,139)(115,140)
(116,141)(117,142)(118,143)(119,144)(120,145)(121,146)(122,147)(123,148)
(124,149)(125,150)(151,176)(152,177)(153,178)(154,179)(155,180)(156,181)
(157,182)(158,183)(159,184)(160,185)(161,186)(162,187)(163,188)(164,189)
(165,190)(166,191)(167,192)(168,193)(169,194)(170,195)(171,196)(172,197)
(173,198)(174,199)(175,200);
s1 := Sym(200)!(  1,101)(  2,102)(  3,103)(  4,104)(  5,105)(  6,106)(  7,107)
(  8,108)(  9,109)( 10,110)( 11,111)( 12,112)( 13,113)( 14,114)( 15,115)
( 16,116)( 17,117)( 18,118)( 19,119)( 20,120)( 21,121)( 22,122)( 23,123)
( 24,124)( 25,125)( 26,126)( 27,127)( 28,128)( 29,129)( 30,130)( 31,131)
( 32,132)( 33,133)( 34,134)( 35,135)( 36,136)( 37,137)( 38,138)( 39,139)
( 40,140)( 41,141)( 42,142)( 43,143)( 44,144)( 45,145)( 46,146)( 47,147)
( 48,148)( 49,149)( 50,150)( 51,151)( 52,152)( 53,153)( 54,154)( 55,155)
( 56,156)( 57,157)( 58,158)( 59,159)( 60,160)( 61,161)( 62,162)( 63,163)
( 64,164)( 65,165)( 66,166)( 67,167)( 68,168)( 69,169)( 70,170)( 71,171)
( 72,172)( 73,173)( 74,174)( 75,175)( 76,176)( 77,177)( 78,178)( 79,179)
( 80,180)( 81,181)( 82,182)( 83,183)( 84,184)( 85,185)( 86,186)( 87,187)
( 88,188)( 89,189)( 90,190)( 91,191)( 92,192)( 93,193)( 94,194)( 95,195)
( 96,196)( 97,197)( 98,198)( 99,199)(100,200);
s2 := Sym(200)!(  2,  5)(  3,  4)(  6, 25)(  7, 24)(  8, 23)(  9, 22)( 10, 21)
( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 27, 30)( 28, 29)( 31, 50)
( 32, 49)( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)
( 40, 41)( 52, 55)( 53, 54)( 56, 75)( 57, 74)( 58, 73)( 59, 72)( 60, 71)
( 61, 70)( 62, 69)( 63, 68)( 64, 67)( 65, 66)( 77, 80)( 78, 79)( 81,100)
( 82, 99)( 83, 98)( 84, 97)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)
( 90, 91)(101,151)(102,155)(103,154)(104,153)(105,152)(106,175)(107,174)
(108,173)(109,172)(110,171)(111,170)(112,169)(113,168)(114,167)(115,166)
(116,165)(117,164)(118,163)(119,162)(120,161)(121,160)(122,159)(123,158)
(124,157)(125,156)(126,176)(127,180)(128,179)(129,178)(130,177)(131,200)
(132,199)(133,198)(134,197)(135,196)(136,195)(137,194)(138,193)(139,192)
(140,191)(141,190)(142,189)(143,188)(144,187)(145,186)(146,185)(147,184)
(148,183)(149,182)(150,181);
s3 := Sym(200)!(  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 25)( 12, 24)
( 13, 23)( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 26, 31)( 27, 35)( 28, 34)
( 29, 33)( 30, 32)( 36, 50)( 37, 49)( 38, 48)( 39, 47)( 40, 46)( 41, 45)
( 42, 44)( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 75)( 62, 74)
( 63, 73)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 76, 81)( 77, 85)( 78, 84)
( 79, 83)( 80, 82)( 86,100)( 87, 99)( 88, 98)( 89, 97)( 90, 96)( 91, 95)
( 92, 94)(101,106)(102,110)(103,109)(104,108)(105,107)(111,125)(112,124)
(113,123)(114,122)(115,121)(116,120)(117,119)(126,131)(127,135)(128,134)
(129,133)(130,132)(136,150)(137,149)(138,148)(139,147)(140,146)(141,145)
(142,144)(151,156)(152,160)(153,159)(154,158)(155,157)(161,175)(162,174)
(163,173)(164,172)(165,171)(166,170)(167,169)(176,181)(177,185)(178,184)
(179,183)(180,182)(186,200)(187,199)(188,198)(189,197)(190,196)(191,195)
(192,194);
poly := sub<Sym(200)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope