Questions?
See the FAQ
or other info.

Polytope of Type {6,45}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,45}*1620b
if this polytope has a name.
Group : SmallGroup(1620,135)
Rank : 3
Schlafli Type : {6,45}
Number of vertices, edges, etc : 18, 405, 135
Order of s0s1s2 : 30
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,15}*540
   5-fold quotients : {6,9}*324c
   9-fold quotients : {6,15}*180
   15-fold quotients : {6,3}*108
   27-fold quotients : {2,15}*60
   45-fold quotients : {6,3}*36
   81-fold quotients : {2,5}*20
   135-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 46, 91)
( 47, 92)( 48, 93)( 49, 97)( 50, 98)( 51, 99)( 52, 94)( 53, 95)( 54, 96)
( 55,100)( 56,101)( 57,102)( 58,106)( 59,107)( 60,108)( 61,103)( 62,104)
( 63,105)( 64,109)( 65,110)( 66,111)( 67,115)( 68,116)( 69,117)( 70,112)
( 71,113)( 72,114)( 73,118)( 74,119)( 75,120)( 76,124)( 77,125)( 78,126)
( 79,121)( 80,122)( 81,123)( 82,127)( 83,128)( 84,129)( 85,133)( 86,134)
( 87,135)( 88,130)( 89,131)( 90,132);;
s1 := (  1, 46)(  2, 48)(  3, 47)(  4, 51)(  5, 50)(  6, 49)(  7, 53)(  8, 52)
(  9, 54)( 10, 82)( 11, 84)( 12, 83)( 13, 87)( 14, 86)( 15, 85)( 16, 89)
( 17, 88)( 18, 90)( 19, 73)( 20, 75)( 21, 74)( 22, 78)( 23, 77)( 24, 76)
( 25, 80)( 26, 79)( 27, 81)( 28, 64)( 29, 66)( 30, 65)( 31, 69)( 32, 68)
( 33, 67)( 34, 71)( 35, 70)( 36, 72)( 37, 55)( 38, 57)( 39, 56)( 40, 60)
( 41, 59)( 42, 58)( 43, 62)( 44, 61)( 45, 63)( 92, 93)( 94, 96)( 97, 98)
(100,127)(101,129)(102,128)(103,132)(104,131)(105,130)(106,134)(107,133)
(108,135)(109,118)(110,120)(111,119)(112,123)(113,122)(114,121)(115,125)
(116,124)(117,126);;
s2 := (  1, 10)(  2, 12)(  3, 11)(  4, 13)(  5, 15)(  6, 14)(  7, 16)(  8, 18)
(  9, 17)( 19, 37)( 20, 39)( 21, 38)( 22, 40)( 23, 42)( 24, 41)( 25, 43)
( 26, 45)( 27, 44)( 29, 30)( 32, 33)( 35, 36)( 46,107)( 47,106)( 48,108)
( 49,101)( 50,100)( 51,102)( 52,104)( 53,103)( 54,105)( 55, 98)( 56, 97)
( 57, 99)( 58, 92)( 59, 91)( 60, 93)( 61, 95)( 62, 94)( 63, 96)( 64,134)
( 65,133)( 66,135)( 67,128)( 68,127)( 69,129)( 70,131)( 71,130)( 72,132)
( 73,125)( 74,124)( 75,126)( 76,119)( 77,118)( 78,120)( 79,122)( 80,121)
( 81,123)( 82,116)( 83,115)( 84,117)( 85,110)( 86,109)( 87,111)( 88,113)
( 89,112)( 90,114);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(135)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 46, 91)( 47, 92)( 48, 93)( 49, 97)( 50, 98)( 51, 99)( 52, 94)( 53, 95)
( 54, 96)( 55,100)( 56,101)( 57,102)( 58,106)( 59,107)( 60,108)( 61,103)
( 62,104)( 63,105)( 64,109)( 65,110)( 66,111)( 67,115)( 68,116)( 69,117)
( 70,112)( 71,113)( 72,114)( 73,118)( 74,119)( 75,120)( 76,124)( 77,125)
( 78,126)( 79,121)( 80,122)( 81,123)( 82,127)( 83,128)( 84,129)( 85,133)
( 86,134)( 87,135)( 88,130)( 89,131)( 90,132);
s1 := Sym(135)!(  1, 46)(  2, 48)(  3, 47)(  4, 51)(  5, 50)(  6, 49)(  7, 53)
(  8, 52)(  9, 54)( 10, 82)( 11, 84)( 12, 83)( 13, 87)( 14, 86)( 15, 85)
( 16, 89)( 17, 88)( 18, 90)( 19, 73)( 20, 75)( 21, 74)( 22, 78)( 23, 77)
( 24, 76)( 25, 80)( 26, 79)( 27, 81)( 28, 64)( 29, 66)( 30, 65)( 31, 69)
( 32, 68)( 33, 67)( 34, 71)( 35, 70)( 36, 72)( 37, 55)( 38, 57)( 39, 56)
( 40, 60)( 41, 59)( 42, 58)( 43, 62)( 44, 61)( 45, 63)( 92, 93)( 94, 96)
( 97, 98)(100,127)(101,129)(102,128)(103,132)(104,131)(105,130)(106,134)
(107,133)(108,135)(109,118)(110,120)(111,119)(112,123)(113,122)(114,121)
(115,125)(116,124)(117,126);
s2 := Sym(135)!(  1, 10)(  2, 12)(  3, 11)(  4, 13)(  5, 15)(  6, 14)(  7, 16)
(  8, 18)(  9, 17)( 19, 37)( 20, 39)( 21, 38)( 22, 40)( 23, 42)( 24, 41)
( 25, 43)( 26, 45)( 27, 44)( 29, 30)( 32, 33)( 35, 36)( 46,107)( 47,106)
( 48,108)( 49,101)( 50,100)( 51,102)( 52,104)( 53,103)( 54,105)( 55, 98)
( 56, 97)( 57, 99)( 58, 92)( 59, 91)( 60, 93)( 61, 95)( 62, 94)( 63, 96)
( 64,134)( 65,133)( 66,135)( 67,128)( 68,127)( 69,129)( 70,131)( 71,130)
( 72,132)( 73,125)( 74,124)( 75,126)( 76,119)( 77,118)( 78,120)( 79,122)
( 80,121)( 81,123)( 82,116)( 83,115)( 84,117)( 85,110)( 86,109)( 87,111)
( 88,113)( 89,112)( 90,114);
poly := sub<Sym(135)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2 >; 
 
References : None.
to this polytope