Questions?
See the FAQ
or other info.

Polytope of Type {6,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,5}*1620
if this polytope has a name.
Group : SmallGroup(1620,422)
Rank : 3
Schlafli Type : {6,5}
Number of vertices, edges, etc : 162, 405, 135
Order of s0s1s2 : 10
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   81-fold quotients : {2,5}*20
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)
(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)
(36,59)(37,73)(38,75)(39,74)(40,79)(41,81)(42,80)(43,76)(44,78)(45,77)(46,64)
(47,66)(48,65)(49,70)(50,72)(51,71)(52,67)(53,69)(54,68);;
s1 := ( 1, 2)( 4,71)( 5,70)( 6,72)( 7,50)( 8,49)( 9,51)(10,35)(11,34)(12,36)
(13,14)(16,74)(17,73)(18,75)(19,59)(20,58)(21,60)(22,38)(23,37)(24,39)(25,26)
(28,80)(29,79)(30,81)(31,32)(40,56)(41,55)(42,57)(43,44)(46,47)(52,68)(53,67)
(54,69)(61,62)(64,65)(76,77);;
s2 := ( 2,59)( 3,36)( 4,61)( 5,29)( 7,31)( 9,57)(10,26)(11,75)(12,49)(13,77)
(14,54)(15,19)(16,47)(17,24)(18,79)(20,70)(21,38)(22,66)(23,40)(25,45)(27,68)
(30,63)(32,56)(34,58)(37,53)(39,76)(41,81)(42,46)(43,74)(44,51)(48,65)(50,67)
(52,72)(64,80)(69,73)(71,78);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)
(15,26)(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)
(35,60)(36,59)(37,73)(38,75)(39,74)(40,79)(41,81)(42,80)(43,76)(44,78)(45,77)
(46,64)(47,66)(48,65)(49,70)(50,72)(51,71)(52,67)(53,69)(54,68);
s1 := Sym(81)!( 1, 2)( 4,71)( 5,70)( 6,72)( 7,50)( 8,49)( 9,51)(10,35)(11,34)
(12,36)(13,14)(16,74)(17,73)(18,75)(19,59)(20,58)(21,60)(22,38)(23,37)(24,39)
(25,26)(28,80)(29,79)(30,81)(31,32)(40,56)(41,55)(42,57)(43,44)(46,47)(52,68)
(53,67)(54,69)(61,62)(64,65)(76,77);
s2 := Sym(81)!( 2,59)( 3,36)( 4,61)( 5,29)( 7,31)( 9,57)(10,26)(11,75)(12,49)
(13,77)(14,54)(15,19)(16,47)(17,24)(18,79)(20,70)(21,38)(22,66)(23,40)(25,45)
(27,68)(30,63)(32,56)(34,58)(37,53)(39,76)(41,81)(42,46)(43,74)(44,51)(48,65)
(50,67)(52,72)(64,80)(69,73)(71,78);
poly := sub<Sym(81)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1 >; 
 
References : None.
to this polytope