Questions?
See the FAQ
or other info.

Polytope of Type {6,68,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,68,2}*1632b
if this polytope has a name.
Group : SmallGroup(1632,1195)
Rank : 4
Schlafli Type : {6,68,2}
Number of vertices, edges, etc : 6, 204, 68, 2
Order of s0s1s2s3 : 102
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   17-fold quotients : {6,4,2}*96b
   34-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35)(38,39)
(42,43)(46,47)(50,51)(54,55)(58,59)(62,63)(66,67);;
s1 := ( 3, 4)( 5,65)( 6,66)( 7,68)( 8,67)( 9,61)(10,62)(11,64)(12,63)(13,57)
(14,58)(15,60)(16,59)(17,53)(18,54)(19,56)(20,55)(21,49)(22,50)(23,52)(24,51)
(25,45)(26,46)(27,48)(28,47)(29,41)(30,42)(31,44)(32,43)(33,37)(34,38)(35,40)
(36,39);;
s2 := ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,68)(10,67)(11,66)(12,65)(13,64)(14,63)
(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)
(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)
(37,40)(38,39);;
s3 := (69,70);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(70)!( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35)
(38,39)(42,43)(46,47)(50,51)(54,55)(58,59)(62,63)(66,67);
s1 := Sym(70)!( 3, 4)( 5,65)( 6,66)( 7,68)( 8,67)( 9,61)(10,62)(11,64)(12,63)
(13,57)(14,58)(15,60)(16,59)(17,53)(18,54)(19,56)(20,55)(21,49)(22,50)(23,52)
(24,51)(25,45)(26,46)(27,48)(28,47)(29,41)(30,42)(31,44)(32,43)(33,37)(34,38)
(35,40)(36,39);
s2 := Sym(70)!( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,68)(10,67)(11,66)(12,65)(13,64)
(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)
(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)
(36,41)(37,40)(38,39);
s3 := Sym(70)!(69,70);
poly := sub<Sym(70)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope