Questions?
See the FAQ
or other info.

Polytope of Type {68,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {68,6,2}*1632b
if this polytope has a name.
Group : SmallGroup(1632,1195)
Rank : 4
Schlafli Type : {68,6,2}
Number of vertices, edges, etc : 68, 204, 6, 2
Order of s0s1s2s3 : 102
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   17-fold quotients : {4,6,2}*96b
   34-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5,67)( 6,68)( 7,65)( 8,66)( 9,63)(10,64)(11,61)(12,62)
(13,59)(14,60)(15,57)(16,58)(17,55)(18,56)(19,53)(20,54)(21,51)(22,52)(23,49)
(24,50)(25,47)(26,48)(27,45)(28,46)(29,43)(30,44)(31,41)(32,42)(33,39)(34,40)
(35,37)(36,38);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,65)(10,67)(11,66)(12,68)(13,61)(14,63)
(15,62)(16,64)(17,57)(18,59)(19,58)(20,60)(21,53)(22,55)(23,54)(24,56)(25,49)
(26,51)(27,50)(28,52)(29,45)(30,47)(31,46)(32,48)(33,41)(34,43)(35,42)(36,44)
(38,39);;
s2 := ( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)
(42,44)(46,48)(50,52)(54,56)(58,60)(62,64)(66,68);;
s3 := (69,70);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(70)!( 1, 3)( 2, 4)( 5,67)( 6,68)( 7,65)( 8,66)( 9,63)(10,64)(11,61)
(12,62)(13,59)(14,60)(15,57)(16,58)(17,55)(18,56)(19,53)(20,54)(21,51)(22,52)
(23,49)(24,50)(25,47)(26,48)(27,45)(28,46)(29,43)(30,44)(31,41)(32,42)(33,39)
(34,40)(35,37)(36,38);
s1 := Sym(70)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,65)(10,67)(11,66)(12,68)(13,61)
(14,63)(15,62)(16,64)(17,57)(18,59)(19,58)(20,60)(21,53)(22,55)(23,54)(24,56)
(25,49)(26,51)(27,50)(28,52)(29,45)(30,47)(31,46)(32,48)(33,41)(34,43)(35,42)
(36,44)(38,39);
s2 := Sym(70)!( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)
(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64)(66,68);
s3 := Sym(70)!(69,70);
poly := sub<Sym(70)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0 >; 
 

to this polytope