Questions?
See the FAQ
or other info.

Polytope of Type {92,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {92,6}*1656
if this polytope has a name.
Group : SmallGroup(1656,113)
Rank : 3
Schlafli Type : {92,6}
Number of vertices, edges, etc : 138, 414, 9
Order of s0s1s2 : 92
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   23-fold quotients : {4,6}*72
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 23)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)(  8, 17)(  9, 16)
( 10, 15)( 11, 14)( 12, 13)( 25, 46)( 26, 45)( 27, 44)( 28, 43)( 29, 42)
( 30, 41)( 31, 40)( 32, 39)( 33, 38)( 34, 37)( 35, 36)( 48, 69)( 49, 68)
( 50, 67)( 51, 66)( 52, 65)( 53, 64)( 54, 63)( 55, 62)( 56, 61)( 57, 60)
( 58, 59)( 70,139)( 71,161)( 72,160)( 73,159)( 74,158)( 75,157)( 76,156)
( 77,155)( 78,154)( 79,153)( 80,152)( 81,151)( 82,150)( 83,149)( 84,148)
( 85,147)( 86,146)( 87,145)( 88,144)( 89,143)( 90,142)( 91,141)( 92,140)
( 93,162)( 94,184)( 95,183)( 96,182)( 97,181)( 98,180)( 99,179)(100,178)
(101,177)(102,176)(103,175)(104,174)(105,173)(106,172)(107,171)(108,170)
(109,169)(110,168)(111,167)(112,166)(113,165)(114,164)(115,163)(116,185)
(117,207)(118,206)(119,205)(120,204)(121,203)(122,202)(123,201)(124,200)
(125,199)(126,198)(127,197)(128,196)(129,195)(130,194)(131,193)(132,192)
(133,191)(134,190)(135,189)(136,188)(137,187)(138,186);;
s1 := (  1,  2)(  3, 23)(  4, 22)(  5, 21)(  6, 20)(  7, 19)(  8, 18)(  9, 17)
( 10, 16)( 11, 15)( 12, 14)( 24, 71)( 25, 70)( 26, 92)( 27, 91)( 28, 90)
( 29, 89)( 30, 88)( 31, 87)( 32, 86)( 33, 85)( 34, 84)( 35, 83)( 36, 82)
( 37, 81)( 38, 80)( 39, 79)( 40, 78)( 41, 77)( 42, 76)( 43, 75)( 44, 74)
( 45, 73)( 46, 72)( 47,140)( 48,139)( 49,161)( 50,160)( 51,159)( 52,158)
( 53,157)( 54,156)( 55,155)( 56,154)( 57,153)( 58,152)( 59,151)( 60,150)
( 61,149)( 62,148)( 63,147)( 64,146)( 65,145)( 66,144)( 67,143)( 68,142)
( 69,141)( 93, 94)( 95,115)( 96,114)( 97,113)( 98,112)( 99,111)(100,110)
(101,109)(102,108)(103,107)(104,106)(116,163)(117,162)(118,184)(119,183)
(120,182)(121,181)(122,180)(123,179)(124,178)(125,177)(126,176)(127,175)
(128,174)(129,173)(130,172)(131,171)(132,170)(133,169)(134,168)(135,167)
(136,166)(137,165)(138,164)(185,186)(187,207)(188,206)(189,205)(190,204)
(191,203)(192,202)(193,201)(194,200)(195,199)(196,198);;
s2 := (  1, 24)(  2, 25)(  3, 26)(  4, 27)(  5, 28)(  6, 29)(  7, 30)(  8, 31)
(  9, 32)( 10, 33)( 11, 34)( 12, 35)( 13, 36)( 14, 37)( 15, 38)( 16, 39)
( 17, 40)( 18, 41)( 19, 42)( 20, 43)( 21, 44)( 22, 45)( 23, 46)( 70,162)
( 71,163)( 72,164)( 73,165)( 74,166)( 75,167)( 76,168)( 77,169)( 78,170)
( 79,171)( 80,172)( 81,173)( 82,174)( 83,175)( 84,176)( 85,177)( 86,178)
( 87,179)( 88,180)( 89,181)( 90,182)( 91,183)( 92,184)( 93,139)( 94,140)
( 95,141)( 96,142)( 97,143)( 98,144)( 99,145)(100,146)(101,147)(102,148)
(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)
(111,157)(112,158)(113,159)(114,160)(115,161)(116,185)(117,186)(118,187)
(119,188)(120,189)(121,190)(122,191)(123,192)(124,193)(125,194)(126,195)
(127,196)(128,197)(129,198)(130,199)(131,200)(132,201)(133,202)(134,203)
(135,204)(136,205)(137,206)(138,207);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(207)!(  2, 23)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)(  8, 17)
(  9, 16)( 10, 15)( 11, 14)( 12, 13)( 25, 46)( 26, 45)( 27, 44)( 28, 43)
( 29, 42)( 30, 41)( 31, 40)( 32, 39)( 33, 38)( 34, 37)( 35, 36)( 48, 69)
( 49, 68)( 50, 67)( 51, 66)( 52, 65)( 53, 64)( 54, 63)( 55, 62)( 56, 61)
( 57, 60)( 58, 59)( 70,139)( 71,161)( 72,160)( 73,159)( 74,158)( 75,157)
( 76,156)( 77,155)( 78,154)( 79,153)( 80,152)( 81,151)( 82,150)( 83,149)
( 84,148)( 85,147)( 86,146)( 87,145)( 88,144)( 89,143)( 90,142)( 91,141)
( 92,140)( 93,162)( 94,184)( 95,183)( 96,182)( 97,181)( 98,180)( 99,179)
(100,178)(101,177)(102,176)(103,175)(104,174)(105,173)(106,172)(107,171)
(108,170)(109,169)(110,168)(111,167)(112,166)(113,165)(114,164)(115,163)
(116,185)(117,207)(118,206)(119,205)(120,204)(121,203)(122,202)(123,201)
(124,200)(125,199)(126,198)(127,197)(128,196)(129,195)(130,194)(131,193)
(132,192)(133,191)(134,190)(135,189)(136,188)(137,187)(138,186);
s1 := Sym(207)!(  1,  2)(  3, 23)(  4, 22)(  5, 21)(  6, 20)(  7, 19)(  8, 18)
(  9, 17)( 10, 16)( 11, 15)( 12, 14)( 24, 71)( 25, 70)( 26, 92)( 27, 91)
( 28, 90)( 29, 89)( 30, 88)( 31, 87)( 32, 86)( 33, 85)( 34, 84)( 35, 83)
( 36, 82)( 37, 81)( 38, 80)( 39, 79)( 40, 78)( 41, 77)( 42, 76)( 43, 75)
( 44, 74)( 45, 73)( 46, 72)( 47,140)( 48,139)( 49,161)( 50,160)( 51,159)
( 52,158)( 53,157)( 54,156)( 55,155)( 56,154)( 57,153)( 58,152)( 59,151)
( 60,150)( 61,149)( 62,148)( 63,147)( 64,146)( 65,145)( 66,144)( 67,143)
( 68,142)( 69,141)( 93, 94)( 95,115)( 96,114)( 97,113)( 98,112)( 99,111)
(100,110)(101,109)(102,108)(103,107)(104,106)(116,163)(117,162)(118,184)
(119,183)(120,182)(121,181)(122,180)(123,179)(124,178)(125,177)(126,176)
(127,175)(128,174)(129,173)(130,172)(131,171)(132,170)(133,169)(134,168)
(135,167)(136,166)(137,165)(138,164)(185,186)(187,207)(188,206)(189,205)
(190,204)(191,203)(192,202)(193,201)(194,200)(195,199)(196,198);
s2 := Sym(207)!(  1, 24)(  2, 25)(  3, 26)(  4, 27)(  5, 28)(  6, 29)(  7, 30)
(  8, 31)(  9, 32)( 10, 33)( 11, 34)( 12, 35)( 13, 36)( 14, 37)( 15, 38)
( 16, 39)( 17, 40)( 18, 41)( 19, 42)( 20, 43)( 21, 44)( 22, 45)( 23, 46)
( 70,162)( 71,163)( 72,164)( 73,165)( 74,166)( 75,167)( 76,168)( 77,169)
( 78,170)( 79,171)( 80,172)( 81,173)( 82,174)( 83,175)( 84,176)( 85,177)
( 86,178)( 87,179)( 88,180)( 89,181)( 90,182)( 91,183)( 92,184)( 93,139)
( 94,140)( 95,141)( 96,142)( 97,143)( 98,144)( 99,145)(100,146)(101,147)
(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)
(110,156)(111,157)(112,158)(113,159)(114,160)(115,161)(116,185)(117,186)
(118,187)(119,188)(120,189)(121,190)(122,191)(123,192)(124,193)(125,194)
(126,195)(127,196)(128,197)(129,198)(130,199)(131,200)(132,201)(133,202)
(134,203)(135,204)(136,205)(137,206)(138,207);
poly := sub<Sym(207)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope