Questions?
See the FAQ
or other info.

Polytope of Type {7,2,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,6}*168
if this polytope has a name.
Group : SmallGroup(168,50)
Rank : 4
Schlafli Type : {7,2,6}
Number of vertices, edges, etc : 7, 7, 6, 6
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {7,2,6,2} of size 336
   {7,2,6,3} of size 504
   {7,2,6,4} of size 672
   {7,2,6,3} of size 672
   {7,2,6,4} of size 672
   {7,2,6,4} of size 672
   {7,2,6,4} of size 1008
   {7,2,6,6} of size 1008
   {7,2,6,6} of size 1008
   {7,2,6,6} of size 1008
   {7,2,6,8} of size 1344
   {7,2,6,4} of size 1344
   {7,2,6,6} of size 1344
   {7,2,6,9} of size 1512
   {7,2,6,3} of size 1512
   {7,2,6,6} of size 1512
   {7,2,6,4} of size 1680
   {7,2,6,5} of size 1680
   {7,2,6,6} of size 1680
   {7,2,6,5} of size 1680
   {7,2,6,5} of size 1680
   {7,2,6,10} of size 1680
Vertex Figure Of :
   {2,7,2,6} of size 336
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {7,2,3}*84
   3-fold quotients : {7,2,2}*56
Covers (Minimal Covers in Boldface) :
   2-fold covers : {7,2,12}*336, {14,2,6}*336
   3-fold covers : {7,2,18}*504, {21,2,6}*504
   4-fold covers : {7,2,24}*672, {14,2,12}*672, {28,2,6}*672, {14,4,6}*672
   5-fold covers : {7,2,30}*840, {35,2,6}*840
   6-fold covers : {7,2,36}*1008, {14,2,18}*1008, {21,2,12}*1008, {14,6,6}*1008a, {14,6,6}*1008b, {42,2,6}*1008
   7-fold covers : {49,2,6}*1176, {7,14,6}*1176, {7,2,42}*1176
   8-fold covers : {7,2,48}*1344, {28,2,12}*1344, {14,4,12}*1344, {28,4,6}*1344, {14,2,24}*1344, {56,2,6}*1344, {14,8,6}*1344, {14,4,6}*1344
   9-fold covers : {7,2,54}*1512, {63,2,6}*1512, {21,2,18}*1512, {21,6,6}*1512a, {21,6,6}*1512b
   10-fold covers : {7,2,60}*1680, {35,2,12}*1680, {14,10,6}*1680, {14,2,30}*1680, {70,2,6}*1680
   11-fold covers : {7,2,66}*1848, {77,2,6}*1848
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := (10,11)(12,13);;
s3 := ( 8,12)( 9,10)(11,13);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(13)!(2,3)(4,5)(6,7);
s1 := Sym(13)!(1,2)(3,4)(5,6);
s2 := Sym(13)!(10,11)(12,13);
s3 := Sym(13)!( 8,12)( 9,10)(11,13);
poly := sub<Sym(13)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope