Questions?
See the FAQ
or other info.

Polytope of Type {2,21,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,21,2}*168
if this polytope has a name.
Group : SmallGroup(168,56)
Rank : 4
Schlafli Type : {2,21,2}
Number of vertices, edges, etc : 2, 21, 21, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,21,2,2} of size 336
   {2,21,2,3} of size 504
   {2,21,2,4} of size 672
   {2,21,2,5} of size 840
   {2,21,2,6} of size 1008
   {2,21,2,7} of size 1176
   {2,21,2,8} of size 1344
   {2,21,2,9} of size 1512
   {2,21,2,10} of size 1680
   {2,21,2,11} of size 1848
Vertex Figure Of :
   {2,2,21,2} of size 336
   {3,2,21,2} of size 504
   {4,2,21,2} of size 672
   {5,2,21,2} of size 840
   {6,2,21,2} of size 1008
   {7,2,21,2} of size 1176
   {8,2,21,2} of size 1344
   {9,2,21,2} of size 1512
   {10,2,21,2} of size 1680
   {11,2,21,2} of size 1848
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,7,2}*56
   7-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,42,2}*336
   3-fold covers : {2,63,2}*504, {2,21,6}*504, {6,21,2}*504
   4-fold covers : {2,84,2}*672, {2,42,4}*672a, {4,42,2}*672a, {2,21,4}*672, {4,21,2}*672
   5-fold covers : {2,105,2}*840
   6-fold covers : {2,126,2}*1008, {2,42,6}*1008b, {2,42,6}*1008c, {6,42,2}*1008b, {6,42,2}*1008c
   7-fold covers : {2,147,2}*1176, {2,21,14}*1176, {14,21,2}*1176
   8-fold covers : {2,84,4}*1344a, {4,84,2}*1344a, {4,42,4}*1344a, {2,168,2}*1344, {2,42,8}*1344, {8,42,2}*1344, {2,21,8}*1344, {8,21,2}*1344, {2,42,4}*1344, {4,42,2}*1344
   9-fold covers : {2,189,2}*1512, {2,63,6}*1512, {6,63,2}*1512, {2,21,6}*1512, {6,21,2}*1512, {6,21,6}*1512
   10-fold covers : {2,42,10}*1680, {10,42,2}*1680, {2,210,2}*1680
   11-fold covers : {2,231,2}*1848
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22);;
s3 := (24,25);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(25)!(1,2);
s1 := Sym(25)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23);
s2 := Sym(25)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22);
s3 := Sym(25)!(24,25);
poly := sub<Sym(25)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope