Questions?
See the FAQ
or other info.

Polytope of Type {420,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {420,2}*1680
if this polytope has a name.
Group : SmallGroup(1680,912)
Rank : 3
Schlafli Type : {420,2}
Number of vertices, edges, etc : 420, 420, 2
Order of s0s1s2 : 420
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {210,2}*840
   3-fold quotients : {140,2}*560
   4-fold quotients : {105,2}*420
   5-fold quotients : {84,2}*336
   6-fold quotients : {70,2}*280
   7-fold quotients : {60,2}*240
   10-fold quotients : {42,2}*168
   12-fold quotients : {35,2}*140
   14-fold quotients : {30,2}*120
   15-fold quotients : {28,2}*112
   20-fold quotients : {21,2}*84
   21-fold quotients : {20,2}*80
   28-fold quotients : {15,2}*60
   30-fold quotients : {14,2}*56
   35-fold quotients : {12,2}*48
   42-fold quotients : {10,2}*40
   60-fold quotients : {7,2}*28
   70-fold quotients : {6,2}*24
   84-fold quotients : {5,2}*20
   105-fold quotients : {4,2}*16
   140-fold quotients : {3,2}*12
   210-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  8, 29)(  9, 35)( 10, 34)( 11, 33)( 12, 32)
( 13, 31)( 14, 30)( 15, 22)( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)
( 21, 23)( 36, 71)( 37, 77)( 38, 76)( 39, 75)( 40, 74)( 41, 73)( 42, 72)
( 43, 99)( 44,105)( 45,104)( 46,103)( 47,102)( 48,101)( 49,100)( 50, 92)
( 51, 98)( 52, 97)( 53, 96)( 54, 95)( 55, 94)( 56, 93)( 57, 85)( 58, 91)
( 59, 90)( 60, 89)( 61, 88)( 62, 87)( 63, 86)( 64, 78)( 65, 84)( 66, 83)
( 67, 82)( 68, 81)( 69, 80)( 70, 79)(107,112)(108,111)(109,110)(113,134)
(114,140)(115,139)(116,138)(117,137)(118,136)(119,135)(120,127)(121,133)
(122,132)(123,131)(124,130)(125,129)(126,128)(141,176)(142,182)(143,181)
(144,180)(145,179)(146,178)(147,177)(148,204)(149,210)(150,209)(151,208)
(152,207)(153,206)(154,205)(155,197)(156,203)(157,202)(158,201)(159,200)
(160,199)(161,198)(162,190)(163,196)(164,195)(165,194)(166,193)(167,192)
(168,191)(169,183)(170,189)(171,188)(172,187)(173,186)(174,185)(175,184)
(211,316)(212,322)(213,321)(214,320)(215,319)(216,318)(217,317)(218,344)
(219,350)(220,349)(221,348)(222,347)(223,346)(224,345)(225,337)(226,343)
(227,342)(228,341)(229,340)(230,339)(231,338)(232,330)(233,336)(234,335)
(235,334)(236,333)(237,332)(238,331)(239,323)(240,329)(241,328)(242,327)
(243,326)(244,325)(245,324)(246,386)(247,392)(248,391)(249,390)(250,389)
(251,388)(252,387)(253,414)(254,420)(255,419)(256,418)(257,417)(258,416)
(259,415)(260,407)(261,413)(262,412)(263,411)(264,410)(265,409)(266,408)
(267,400)(268,406)(269,405)(270,404)(271,403)(272,402)(273,401)(274,393)
(275,399)(276,398)(277,397)(278,396)(279,395)(280,394)(281,351)(282,357)
(283,356)(284,355)(285,354)(286,353)(287,352)(288,379)(289,385)(290,384)
(291,383)(292,382)(293,381)(294,380)(295,372)(296,378)(297,377)(298,376)
(299,375)(300,374)(301,373)(302,365)(303,371)(304,370)(305,369)(306,368)
(307,367)(308,366)(309,358)(310,364)(311,363)(312,362)(313,361)(314,360)
(315,359);;
s1 := (  1,254)(  2,253)(  3,259)(  4,258)(  5,257)(  6,256)(  7,255)(  8,247)
(  9,246)( 10,252)( 11,251)( 12,250)( 13,249)( 14,248)( 15,275)( 16,274)
( 17,280)( 18,279)( 19,278)( 20,277)( 21,276)( 22,268)( 23,267)( 24,273)
( 25,272)( 26,271)( 27,270)( 28,269)( 29,261)( 30,260)( 31,266)( 32,265)
( 33,264)( 34,263)( 35,262)( 36,219)( 37,218)( 38,224)( 39,223)( 40,222)
( 41,221)( 42,220)( 43,212)( 44,211)( 45,217)( 46,216)( 47,215)( 48,214)
( 49,213)( 50,240)( 51,239)( 52,245)( 53,244)( 54,243)( 55,242)( 56,241)
( 57,233)( 58,232)( 59,238)( 60,237)( 61,236)( 62,235)( 63,234)( 64,226)
( 65,225)( 66,231)( 67,230)( 68,229)( 69,228)( 70,227)( 71,289)( 72,288)
( 73,294)( 74,293)( 75,292)( 76,291)( 77,290)( 78,282)( 79,281)( 80,287)
( 81,286)( 82,285)( 83,284)( 84,283)( 85,310)( 86,309)( 87,315)( 88,314)
( 89,313)( 90,312)( 91,311)( 92,303)( 93,302)( 94,308)( 95,307)( 96,306)
( 97,305)( 98,304)( 99,296)(100,295)(101,301)(102,300)(103,299)(104,298)
(105,297)(106,359)(107,358)(108,364)(109,363)(110,362)(111,361)(112,360)
(113,352)(114,351)(115,357)(116,356)(117,355)(118,354)(119,353)(120,380)
(121,379)(122,385)(123,384)(124,383)(125,382)(126,381)(127,373)(128,372)
(129,378)(130,377)(131,376)(132,375)(133,374)(134,366)(135,365)(136,371)
(137,370)(138,369)(139,368)(140,367)(141,324)(142,323)(143,329)(144,328)
(145,327)(146,326)(147,325)(148,317)(149,316)(150,322)(151,321)(152,320)
(153,319)(154,318)(155,345)(156,344)(157,350)(158,349)(159,348)(160,347)
(161,346)(162,338)(163,337)(164,343)(165,342)(166,341)(167,340)(168,339)
(169,331)(170,330)(171,336)(172,335)(173,334)(174,333)(175,332)(176,394)
(177,393)(178,399)(179,398)(180,397)(181,396)(182,395)(183,387)(184,386)
(185,392)(186,391)(187,390)(188,389)(189,388)(190,415)(191,414)(192,420)
(193,419)(194,418)(195,417)(196,416)(197,408)(198,407)(199,413)(200,412)
(201,411)(202,410)(203,409)(204,401)(205,400)(206,406)(207,405)(208,404)
(209,403)(210,402);;
s2 := (421,422);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(422)!(  2,  7)(  3,  6)(  4,  5)(  8, 29)(  9, 35)( 10, 34)( 11, 33)
( 12, 32)( 13, 31)( 14, 30)( 15, 22)( 16, 28)( 17, 27)( 18, 26)( 19, 25)
( 20, 24)( 21, 23)( 36, 71)( 37, 77)( 38, 76)( 39, 75)( 40, 74)( 41, 73)
( 42, 72)( 43, 99)( 44,105)( 45,104)( 46,103)( 47,102)( 48,101)( 49,100)
( 50, 92)( 51, 98)( 52, 97)( 53, 96)( 54, 95)( 55, 94)( 56, 93)( 57, 85)
( 58, 91)( 59, 90)( 60, 89)( 61, 88)( 62, 87)( 63, 86)( 64, 78)( 65, 84)
( 66, 83)( 67, 82)( 68, 81)( 69, 80)( 70, 79)(107,112)(108,111)(109,110)
(113,134)(114,140)(115,139)(116,138)(117,137)(118,136)(119,135)(120,127)
(121,133)(122,132)(123,131)(124,130)(125,129)(126,128)(141,176)(142,182)
(143,181)(144,180)(145,179)(146,178)(147,177)(148,204)(149,210)(150,209)
(151,208)(152,207)(153,206)(154,205)(155,197)(156,203)(157,202)(158,201)
(159,200)(160,199)(161,198)(162,190)(163,196)(164,195)(165,194)(166,193)
(167,192)(168,191)(169,183)(170,189)(171,188)(172,187)(173,186)(174,185)
(175,184)(211,316)(212,322)(213,321)(214,320)(215,319)(216,318)(217,317)
(218,344)(219,350)(220,349)(221,348)(222,347)(223,346)(224,345)(225,337)
(226,343)(227,342)(228,341)(229,340)(230,339)(231,338)(232,330)(233,336)
(234,335)(235,334)(236,333)(237,332)(238,331)(239,323)(240,329)(241,328)
(242,327)(243,326)(244,325)(245,324)(246,386)(247,392)(248,391)(249,390)
(250,389)(251,388)(252,387)(253,414)(254,420)(255,419)(256,418)(257,417)
(258,416)(259,415)(260,407)(261,413)(262,412)(263,411)(264,410)(265,409)
(266,408)(267,400)(268,406)(269,405)(270,404)(271,403)(272,402)(273,401)
(274,393)(275,399)(276,398)(277,397)(278,396)(279,395)(280,394)(281,351)
(282,357)(283,356)(284,355)(285,354)(286,353)(287,352)(288,379)(289,385)
(290,384)(291,383)(292,382)(293,381)(294,380)(295,372)(296,378)(297,377)
(298,376)(299,375)(300,374)(301,373)(302,365)(303,371)(304,370)(305,369)
(306,368)(307,367)(308,366)(309,358)(310,364)(311,363)(312,362)(313,361)
(314,360)(315,359);
s1 := Sym(422)!(  1,254)(  2,253)(  3,259)(  4,258)(  5,257)(  6,256)(  7,255)
(  8,247)(  9,246)( 10,252)( 11,251)( 12,250)( 13,249)( 14,248)( 15,275)
( 16,274)( 17,280)( 18,279)( 19,278)( 20,277)( 21,276)( 22,268)( 23,267)
( 24,273)( 25,272)( 26,271)( 27,270)( 28,269)( 29,261)( 30,260)( 31,266)
( 32,265)( 33,264)( 34,263)( 35,262)( 36,219)( 37,218)( 38,224)( 39,223)
( 40,222)( 41,221)( 42,220)( 43,212)( 44,211)( 45,217)( 46,216)( 47,215)
( 48,214)( 49,213)( 50,240)( 51,239)( 52,245)( 53,244)( 54,243)( 55,242)
( 56,241)( 57,233)( 58,232)( 59,238)( 60,237)( 61,236)( 62,235)( 63,234)
( 64,226)( 65,225)( 66,231)( 67,230)( 68,229)( 69,228)( 70,227)( 71,289)
( 72,288)( 73,294)( 74,293)( 75,292)( 76,291)( 77,290)( 78,282)( 79,281)
( 80,287)( 81,286)( 82,285)( 83,284)( 84,283)( 85,310)( 86,309)( 87,315)
( 88,314)( 89,313)( 90,312)( 91,311)( 92,303)( 93,302)( 94,308)( 95,307)
( 96,306)( 97,305)( 98,304)( 99,296)(100,295)(101,301)(102,300)(103,299)
(104,298)(105,297)(106,359)(107,358)(108,364)(109,363)(110,362)(111,361)
(112,360)(113,352)(114,351)(115,357)(116,356)(117,355)(118,354)(119,353)
(120,380)(121,379)(122,385)(123,384)(124,383)(125,382)(126,381)(127,373)
(128,372)(129,378)(130,377)(131,376)(132,375)(133,374)(134,366)(135,365)
(136,371)(137,370)(138,369)(139,368)(140,367)(141,324)(142,323)(143,329)
(144,328)(145,327)(146,326)(147,325)(148,317)(149,316)(150,322)(151,321)
(152,320)(153,319)(154,318)(155,345)(156,344)(157,350)(158,349)(159,348)
(160,347)(161,346)(162,338)(163,337)(164,343)(165,342)(166,341)(167,340)
(168,339)(169,331)(170,330)(171,336)(172,335)(173,334)(174,333)(175,332)
(176,394)(177,393)(178,399)(179,398)(180,397)(181,396)(182,395)(183,387)
(184,386)(185,392)(186,391)(187,390)(188,389)(189,388)(190,415)(191,414)
(192,420)(193,419)(194,418)(195,417)(196,416)(197,408)(198,407)(199,413)
(200,412)(201,411)(202,410)(203,409)(204,401)(205,400)(206,406)(207,405)
(208,404)(209,403)(210,402);
s2 := Sym(422)!(421,422);
poly := sub<Sym(422)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope