Questions?
See the FAQ
or other info.

Polytope of Type {210,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {210,4}*1680a
Also Known As : {210,4|2}. if this polytope has another name.
Group : SmallGroup(1680,914)
Rank : 3
Schlafli Type : {210,4}
Number of vertices, edges, etc : 210, 420, 4
Order of s0s1s2 : 420
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {210,2}*840
   3-fold quotients : {70,4}*560
   4-fold quotients : {105,2}*420
   5-fold quotients : {42,4}*336a
   6-fold quotients : {70,2}*280
   7-fold quotients : {30,4}*240a
   10-fold quotients : {42,2}*168
   12-fold quotients : {35,2}*140
   14-fold quotients : {30,2}*120
   15-fold quotients : {14,4}*112
   20-fold quotients : {21,2}*84
   21-fold quotients : {10,4}*80
   28-fold quotients : {15,2}*60
   30-fold quotients : {14,2}*56
   35-fold quotients : {6,4}*48a
   42-fold quotients : {10,2}*40
   60-fold quotients : {7,2}*28
   70-fold quotients : {6,2}*24
   84-fold quotients : {5,2}*20
   105-fold quotients : {2,4}*16
   140-fold quotients : {3,2}*12
   210-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  8, 29)(  9, 35)( 10, 34)( 11, 33)( 12, 32)
( 13, 31)( 14, 30)( 15, 22)( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)
( 21, 23)( 36, 71)( 37, 77)( 38, 76)( 39, 75)( 40, 74)( 41, 73)( 42, 72)
( 43, 99)( 44,105)( 45,104)( 46,103)( 47,102)( 48,101)( 49,100)( 50, 92)
( 51, 98)( 52, 97)( 53, 96)( 54, 95)( 55, 94)( 56, 93)( 57, 85)( 58, 91)
( 59, 90)( 60, 89)( 61, 88)( 62, 87)( 63, 86)( 64, 78)( 65, 84)( 66, 83)
( 67, 82)( 68, 81)( 69, 80)( 70, 79)(107,112)(108,111)(109,110)(113,134)
(114,140)(115,139)(116,138)(117,137)(118,136)(119,135)(120,127)(121,133)
(122,132)(123,131)(124,130)(125,129)(126,128)(141,176)(142,182)(143,181)
(144,180)(145,179)(146,178)(147,177)(148,204)(149,210)(150,209)(151,208)
(152,207)(153,206)(154,205)(155,197)(156,203)(157,202)(158,201)(159,200)
(160,199)(161,198)(162,190)(163,196)(164,195)(165,194)(166,193)(167,192)
(168,191)(169,183)(170,189)(171,188)(172,187)(173,186)(174,185)(175,184)
(212,217)(213,216)(214,215)(218,239)(219,245)(220,244)(221,243)(222,242)
(223,241)(224,240)(225,232)(226,238)(227,237)(228,236)(229,235)(230,234)
(231,233)(246,281)(247,287)(248,286)(249,285)(250,284)(251,283)(252,282)
(253,309)(254,315)(255,314)(256,313)(257,312)(258,311)(259,310)(260,302)
(261,308)(262,307)(263,306)(264,305)(265,304)(266,303)(267,295)(268,301)
(269,300)(270,299)(271,298)(272,297)(273,296)(274,288)(275,294)(276,293)
(277,292)(278,291)(279,290)(280,289)(317,322)(318,321)(319,320)(323,344)
(324,350)(325,349)(326,348)(327,347)(328,346)(329,345)(330,337)(331,343)
(332,342)(333,341)(334,340)(335,339)(336,338)(351,386)(352,392)(353,391)
(354,390)(355,389)(356,388)(357,387)(358,414)(359,420)(360,419)(361,418)
(362,417)(363,416)(364,415)(365,407)(366,413)(367,412)(368,411)(369,410)
(370,409)(371,408)(372,400)(373,406)(374,405)(375,404)(376,403)(377,402)
(378,401)(379,393)(380,399)(381,398)(382,397)(383,396)(384,395)(385,394);;
s1 := (  1, 44)(  2, 43)(  3, 49)(  4, 48)(  5, 47)(  6, 46)(  7, 45)(  8, 37)
(  9, 36)( 10, 42)( 11, 41)( 12, 40)( 13, 39)( 14, 38)( 15, 65)( 16, 64)
( 17, 70)( 18, 69)( 19, 68)( 20, 67)( 21, 66)( 22, 58)( 23, 57)( 24, 63)
( 25, 62)( 26, 61)( 27, 60)( 28, 59)( 29, 51)( 30, 50)( 31, 56)( 32, 55)
( 33, 54)( 34, 53)( 35, 52)( 71, 79)( 72, 78)( 73, 84)( 74, 83)( 75, 82)
( 76, 81)( 77, 80)( 85,100)( 86, 99)( 87,105)( 88,104)( 89,103)( 90,102)
( 91,101)( 92, 93)( 94, 98)( 95, 97)(106,149)(107,148)(108,154)(109,153)
(110,152)(111,151)(112,150)(113,142)(114,141)(115,147)(116,146)(117,145)
(118,144)(119,143)(120,170)(121,169)(122,175)(123,174)(124,173)(125,172)
(126,171)(127,163)(128,162)(129,168)(130,167)(131,166)(132,165)(133,164)
(134,156)(135,155)(136,161)(137,160)(138,159)(139,158)(140,157)(176,184)
(177,183)(178,189)(179,188)(180,187)(181,186)(182,185)(190,205)(191,204)
(192,210)(193,209)(194,208)(195,207)(196,206)(197,198)(199,203)(200,202)
(211,359)(212,358)(213,364)(214,363)(215,362)(216,361)(217,360)(218,352)
(219,351)(220,357)(221,356)(222,355)(223,354)(224,353)(225,380)(226,379)
(227,385)(228,384)(229,383)(230,382)(231,381)(232,373)(233,372)(234,378)
(235,377)(236,376)(237,375)(238,374)(239,366)(240,365)(241,371)(242,370)
(243,369)(244,368)(245,367)(246,324)(247,323)(248,329)(249,328)(250,327)
(251,326)(252,325)(253,317)(254,316)(255,322)(256,321)(257,320)(258,319)
(259,318)(260,345)(261,344)(262,350)(263,349)(264,348)(265,347)(266,346)
(267,338)(268,337)(269,343)(270,342)(271,341)(272,340)(273,339)(274,331)
(275,330)(276,336)(277,335)(278,334)(279,333)(280,332)(281,394)(282,393)
(283,399)(284,398)(285,397)(286,396)(287,395)(288,387)(289,386)(290,392)
(291,391)(292,390)(293,389)(294,388)(295,415)(296,414)(297,420)(298,419)
(299,418)(300,417)(301,416)(302,408)(303,407)(304,413)(305,412)(306,411)
(307,410)(308,409)(309,401)(310,400)(311,406)(312,405)(313,404)(314,403)
(315,402);;
s2 := (  1,211)(  2,212)(  3,213)(  4,214)(  5,215)(  6,216)(  7,217)(  8,218)
(  9,219)( 10,220)( 11,221)( 12,222)( 13,223)( 14,224)( 15,225)( 16,226)
( 17,227)( 18,228)( 19,229)( 20,230)( 21,231)( 22,232)( 23,233)( 24,234)
( 25,235)( 26,236)( 27,237)( 28,238)( 29,239)( 30,240)( 31,241)( 32,242)
( 33,243)( 34,244)( 35,245)( 36,246)( 37,247)( 38,248)( 39,249)( 40,250)
( 41,251)( 42,252)( 43,253)( 44,254)( 45,255)( 46,256)( 47,257)( 48,258)
( 49,259)( 50,260)( 51,261)( 52,262)( 53,263)( 54,264)( 55,265)( 56,266)
( 57,267)( 58,268)( 59,269)( 60,270)( 61,271)( 62,272)( 63,273)( 64,274)
( 65,275)( 66,276)( 67,277)( 68,278)( 69,279)( 70,280)( 71,281)( 72,282)
( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,289)( 80,290)
( 81,291)( 82,292)( 83,293)( 84,294)( 85,295)( 86,296)( 87,297)( 88,298)
( 89,299)( 90,300)( 91,301)( 92,302)( 93,303)( 94,304)( 95,305)( 96,306)
( 97,307)( 98,308)( 99,309)(100,310)(101,311)(102,312)(103,313)(104,314)
(105,315)(106,316)(107,317)(108,318)(109,319)(110,320)(111,321)(112,322)
(113,323)(114,324)(115,325)(116,326)(117,327)(118,328)(119,329)(120,330)
(121,331)(122,332)(123,333)(124,334)(125,335)(126,336)(127,337)(128,338)
(129,339)(130,340)(131,341)(132,342)(133,343)(134,344)(135,345)(136,346)
(137,347)(138,348)(139,349)(140,350)(141,351)(142,352)(143,353)(144,354)
(145,355)(146,356)(147,357)(148,358)(149,359)(150,360)(151,361)(152,362)
(153,363)(154,364)(155,365)(156,366)(157,367)(158,368)(159,369)(160,370)
(161,371)(162,372)(163,373)(164,374)(165,375)(166,376)(167,377)(168,378)
(169,379)(170,380)(171,381)(172,382)(173,383)(174,384)(175,385)(176,386)
(177,387)(178,388)(179,389)(180,390)(181,391)(182,392)(183,393)(184,394)
(185,395)(186,396)(187,397)(188,398)(189,399)(190,400)(191,401)(192,402)
(193,403)(194,404)(195,405)(196,406)(197,407)(198,408)(199,409)(200,410)
(201,411)(202,412)(203,413)(204,414)(205,415)(206,416)(207,417)(208,418)
(209,419)(210,420);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(420)!(  2,  7)(  3,  6)(  4,  5)(  8, 29)(  9, 35)( 10, 34)( 11, 33)
( 12, 32)( 13, 31)( 14, 30)( 15, 22)( 16, 28)( 17, 27)( 18, 26)( 19, 25)
( 20, 24)( 21, 23)( 36, 71)( 37, 77)( 38, 76)( 39, 75)( 40, 74)( 41, 73)
( 42, 72)( 43, 99)( 44,105)( 45,104)( 46,103)( 47,102)( 48,101)( 49,100)
( 50, 92)( 51, 98)( 52, 97)( 53, 96)( 54, 95)( 55, 94)( 56, 93)( 57, 85)
( 58, 91)( 59, 90)( 60, 89)( 61, 88)( 62, 87)( 63, 86)( 64, 78)( 65, 84)
( 66, 83)( 67, 82)( 68, 81)( 69, 80)( 70, 79)(107,112)(108,111)(109,110)
(113,134)(114,140)(115,139)(116,138)(117,137)(118,136)(119,135)(120,127)
(121,133)(122,132)(123,131)(124,130)(125,129)(126,128)(141,176)(142,182)
(143,181)(144,180)(145,179)(146,178)(147,177)(148,204)(149,210)(150,209)
(151,208)(152,207)(153,206)(154,205)(155,197)(156,203)(157,202)(158,201)
(159,200)(160,199)(161,198)(162,190)(163,196)(164,195)(165,194)(166,193)
(167,192)(168,191)(169,183)(170,189)(171,188)(172,187)(173,186)(174,185)
(175,184)(212,217)(213,216)(214,215)(218,239)(219,245)(220,244)(221,243)
(222,242)(223,241)(224,240)(225,232)(226,238)(227,237)(228,236)(229,235)
(230,234)(231,233)(246,281)(247,287)(248,286)(249,285)(250,284)(251,283)
(252,282)(253,309)(254,315)(255,314)(256,313)(257,312)(258,311)(259,310)
(260,302)(261,308)(262,307)(263,306)(264,305)(265,304)(266,303)(267,295)
(268,301)(269,300)(270,299)(271,298)(272,297)(273,296)(274,288)(275,294)
(276,293)(277,292)(278,291)(279,290)(280,289)(317,322)(318,321)(319,320)
(323,344)(324,350)(325,349)(326,348)(327,347)(328,346)(329,345)(330,337)
(331,343)(332,342)(333,341)(334,340)(335,339)(336,338)(351,386)(352,392)
(353,391)(354,390)(355,389)(356,388)(357,387)(358,414)(359,420)(360,419)
(361,418)(362,417)(363,416)(364,415)(365,407)(366,413)(367,412)(368,411)
(369,410)(370,409)(371,408)(372,400)(373,406)(374,405)(375,404)(376,403)
(377,402)(378,401)(379,393)(380,399)(381,398)(382,397)(383,396)(384,395)
(385,394);
s1 := Sym(420)!(  1, 44)(  2, 43)(  3, 49)(  4, 48)(  5, 47)(  6, 46)(  7, 45)
(  8, 37)(  9, 36)( 10, 42)( 11, 41)( 12, 40)( 13, 39)( 14, 38)( 15, 65)
( 16, 64)( 17, 70)( 18, 69)( 19, 68)( 20, 67)( 21, 66)( 22, 58)( 23, 57)
( 24, 63)( 25, 62)( 26, 61)( 27, 60)( 28, 59)( 29, 51)( 30, 50)( 31, 56)
( 32, 55)( 33, 54)( 34, 53)( 35, 52)( 71, 79)( 72, 78)( 73, 84)( 74, 83)
( 75, 82)( 76, 81)( 77, 80)( 85,100)( 86, 99)( 87,105)( 88,104)( 89,103)
( 90,102)( 91,101)( 92, 93)( 94, 98)( 95, 97)(106,149)(107,148)(108,154)
(109,153)(110,152)(111,151)(112,150)(113,142)(114,141)(115,147)(116,146)
(117,145)(118,144)(119,143)(120,170)(121,169)(122,175)(123,174)(124,173)
(125,172)(126,171)(127,163)(128,162)(129,168)(130,167)(131,166)(132,165)
(133,164)(134,156)(135,155)(136,161)(137,160)(138,159)(139,158)(140,157)
(176,184)(177,183)(178,189)(179,188)(180,187)(181,186)(182,185)(190,205)
(191,204)(192,210)(193,209)(194,208)(195,207)(196,206)(197,198)(199,203)
(200,202)(211,359)(212,358)(213,364)(214,363)(215,362)(216,361)(217,360)
(218,352)(219,351)(220,357)(221,356)(222,355)(223,354)(224,353)(225,380)
(226,379)(227,385)(228,384)(229,383)(230,382)(231,381)(232,373)(233,372)
(234,378)(235,377)(236,376)(237,375)(238,374)(239,366)(240,365)(241,371)
(242,370)(243,369)(244,368)(245,367)(246,324)(247,323)(248,329)(249,328)
(250,327)(251,326)(252,325)(253,317)(254,316)(255,322)(256,321)(257,320)
(258,319)(259,318)(260,345)(261,344)(262,350)(263,349)(264,348)(265,347)
(266,346)(267,338)(268,337)(269,343)(270,342)(271,341)(272,340)(273,339)
(274,331)(275,330)(276,336)(277,335)(278,334)(279,333)(280,332)(281,394)
(282,393)(283,399)(284,398)(285,397)(286,396)(287,395)(288,387)(289,386)
(290,392)(291,391)(292,390)(293,389)(294,388)(295,415)(296,414)(297,420)
(298,419)(299,418)(300,417)(301,416)(302,408)(303,407)(304,413)(305,412)
(306,411)(307,410)(308,409)(309,401)(310,400)(311,406)(312,405)(313,404)
(314,403)(315,402);
s2 := Sym(420)!(  1,211)(  2,212)(  3,213)(  4,214)(  5,215)(  6,216)(  7,217)
(  8,218)(  9,219)( 10,220)( 11,221)( 12,222)( 13,223)( 14,224)( 15,225)
( 16,226)( 17,227)( 18,228)( 19,229)( 20,230)( 21,231)( 22,232)( 23,233)
( 24,234)( 25,235)( 26,236)( 27,237)( 28,238)( 29,239)( 30,240)( 31,241)
( 32,242)( 33,243)( 34,244)( 35,245)( 36,246)( 37,247)( 38,248)( 39,249)
( 40,250)( 41,251)( 42,252)( 43,253)( 44,254)( 45,255)( 46,256)( 47,257)
( 48,258)( 49,259)( 50,260)( 51,261)( 52,262)( 53,263)( 54,264)( 55,265)
( 56,266)( 57,267)( 58,268)( 59,269)( 60,270)( 61,271)( 62,272)( 63,273)
( 64,274)( 65,275)( 66,276)( 67,277)( 68,278)( 69,279)( 70,280)( 71,281)
( 72,282)( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,289)
( 80,290)( 81,291)( 82,292)( 83,293)( 84,294)( 85,295)( 86,296)( 87,297)
( 88,298)( 89,299)( 90,300)( 91,301)( 92,302)( 93,303)( 94,304)( 95,305)
( 96,306)( 97,307)( 98,308)( 99,309)(100,310)(101,311)(102,312)(103,313)
(104,314)(105,315)(106,316)(107,317)(108,318)(109,319)(110,320)(111,321)
(112,322)(113,323)(114,324)(115,325)(116,326)(117,327)(118,328)(119,329)
(120,330)(121,331)(122,332)(123,333)(124,334)(125,335)(126,336)(127,337)
(128,338)(129,339)(130,340)(131,341)(132,342)(133,343)(134,344)(135,345)
(136,346)(137,347)(138,348)(139,349)(140,350)(141,351)(142,352)(143,353)
(144,354)(145,355)(146,356)(147,357)(148,358)(149,359)(150,360)(151,361)
(152,362)(153,363)(154,364)(155,365)(156,366)(157,367)(158,368)(159,369)
(160,370)(161,371)(162,372)(163,373)(164,374)(165,375)(166,376)(167,377)
(168,378)(169,379)(170,380)(171,381)(172,382)(173,383)(174,384)(175,385)
(176,386)(177,387)(178,388)(179,389)(180,390)(181,391)(182,392)(183,393)
(184,394)(185,395)(186,396)(187,397)(188,398)(189,399)(190,400)(191,401)
(192,402)(193,403)(194,404)(195,405)(196,406)(197,407)(198,408)(199,409)
(200,410)(201,411)(202,412)(203,413)(204,414)(205,415)(206,416)(207,417)
(208,418)(209,419)(210,420);
poly := sub<Sym(420)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope