Questions?
See the FAQ
or other info.

Polytope of Type {24,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,6,2}*1728b
if this polytope has a name.
Group : SmallGroup(1728,15888)
Rank : 4
Schlafli Type : {24,6,2}
Number of vertices, edges, etc : 72, 216, 18, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,6,2}*864b
   3-fold quotients : {24,6,2}*576a
   4-fold quotients : {6,6,2}*432b
   6-fold quotients : {12,6,2}*288a
   8-fold quotients : {6,6,2}*216
   9-fold quotients : {24,2,2}*192, {8,6,2}*192
   12-fold quotients : {6,6,2}*144a
   18-fold quotients : {12,2,2}*96, {4,6,2}*96a
   27-fold quotients : {8,2,2}*64
   36-fold quotients : {2,6,2}*48, {6,2,2}*48
   54-fold quotients : {4,2,2}*32
   72-fold quotients : {2,3,2}*24, {3,2,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)( 14, 24)
( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)( 37, 46)
( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)
( 55, 82)( 56, 84)( 57, 83)( 58, 85)( 59, 87)( 60, 86)( 61, 88)( 62, 90)
( 63, 89)( 64,100)( 65,102)( 66,101)( 67,103)( 68,105)( 69,104)( 70,106)
( 71,108)( 72,107)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)
( 79, 97)( 80, 99)( 81, 98)(109,163)(110,165)(111,164)(112,166)(113,168)
(114,167)(115,169)(116,171)(117,170)(118,181)(119,183)(120,182)(121,184)
(122,186)(123,185)(124,187)(125,189)(126,188)(127,172)(128,174)(129,173)
(130,175)(131,177)(132,176)(133,178)(134,180)(135,179)(136,190)(137,192)
(138,191)(139,193)(140,195)(141,194)(142,196)(143,198)(144,197)(145,208)
(146,210)(147,209)(148,211)(149,213)(150,212)(151,214)(152,216)(153,215)
(154,199)(155,201)(156,200)(157,202)(158,204)(159,203)(160,205)(161,207)
(162,206);;
s1 := (  1,118)(  2,119)(  3,120)(  4,126)(  5,124)(  6,125)(  7,122)(  8,123)
(  9,121)( 10,109)( 11,110)( 12,111)( 13,117)( 14,115)( 15,116)( 16,113)
( 17,114)( 18,112)( 19,127)( 20,128)( 21,129)( 22,135)( 23,133)( 24,134)
( 25,131)( 26,132)( 27,130)( 28,145)( 29,146)( 30,147)( 31,153)( 32,151)
( 33,152)( 34,149)( 35,150)( 36,148)( 37,136)( 38,137)( 39,138)( 40,144)
( 41,142)( 42,143)( 43,140)( 44,141)( 45,139)( 46,154)( 47,155)( 48,156)
( 49,162)( 50,160)( 51,161)( 52,158)( 53,159)( 54,157)( 55,199)( 56,200)
( 57,201)( 58,207)( 59,205)( 60,206)( 61,203)( 62,204)( 63,202)( 64,190)
( 65,191)( 66,192)( 67,198)( 68,196)( 69,197)( 70,194)( 71,195)( 72,193)
( 73,208)( 74,209)( 75,210)( 76,216)( 77,214)( 78,215)( 79,212)( 80,213)
( 81,211)( 82,172)( 83,173)( 84,174)( 85,180)( 86,178)( 87,179)( 88,176)
( 89,177)( 90,175)( 91,163)( 92,164)( 93,165)( 94,171)( 95,169)( 96,170)
( 97,167)( 98,168)( 99,166)(100,181)(101,182)(102,183)(103,189)(104,187)
(105,188)(106,185)(107,186)(108,184);;
s2 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)( 35, 36)
( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)( 53, 54)
( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)( 66, 68)( 71, 72)
( 73, 76)( 74, 78)( 75, 77)( 80, 81)( 82, 85)( 83, 87)( 84, 86)( 89, 90)
( 91, 94)( 92, 96)( 93, 95)( 98, 99)(100,103)(101,105)(102,104)(107,108)
(109,112)(110,114)(111,113)(116,117)(118,121)(119,123)(120,122)(125,126)
(127,130)(128,132)(129,131)(134,135)(136,139)(137,141)(138,140)(143,144)
(145,148)(146,150)(147,149)(152,153)(154,157)(155,159)(156,158)(161,162)
(163,166)(164,168)(165,167)(170,171)(172,175)(173,177)(174,176)(179,180)
(181,184)(182,186)(183,185)(188,189)(190,193)(191,195)(192,194)(197,198)
(199,202)(200,204)(201,203)(206,207)(208,211)(209,213)(210,212)(215,216);;
s3 := (217,218);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(218)!(  2,  3)(  5,  6)(  8,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)
( 14, 24)( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)
( 37, 46)( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)
( 45, 53)( 55, 82)( 56, 84)( 57, 83)( 58, 85)( 59, 87)( 60, 86)( 61, 88)
( 62, 90)( 63, 89)( 64,100)( 65,102)( 66,101)( 67,103)( 68,105)( 69,104)
( 70,106)( 71,108)( 72,107)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)
( 78, 95)( 79, 97)( 80, 99)( 81, 98)(109,163)(110,165)(111,164)(112,166)
(113,168)(114,167)(115,169)(116,171)(117,170)(118,181)(119,183)(120,182)
(121,184)(122,186)(123,185)(124,187)(125,189)(126,188)(127,172)(128,174)
(129,173)(130,175)(131,177)(132,176)(133,178)(134,180)(135,179)(136,190)
(137,192)(138,191)(139,193)(140,195)(141,194)(142,196)(143,198)(144,197)
(145,208)(146,210)(147,209)(148,211)(149,213)(150,212)(151,214)(152,216)
(153,215)(154,199)(155,201)(156,200)(157,202)(158,204)(159,203)(160,205)
(161,207)(162,206);
s1 := Sym(218)!(  1,118)(  2,119)(  3,120)(  4,126)(  5,124)(  6,125)(  7,122)
(  8,123)(  9,121)( 10,109)( 11,110)( 12,111)( 13,117)( 14,115)( 15,116)
( 16,113)( 17,114)( 18,112)( 19,127)( 20,128)( 21,129)( 22,135)( 23,133)
( 24,134)( 25,131)( 26,132)( 27,130)( 28,145)( 29,146)( 30,147)( 31,153)
( 32,151)( 33,152)( 34,149)( 35,150)( 36,148)( 37,136)( 38,137)( 39,138)
( 40,144)( 41,142)( 42,143)( 43,140)( 44,141)( 45,139)( 46,154)( 47,155)
( 48,156)( 49,162)( 50,160)( 51,161)( 52,158)( 53,159)( 54,157)( 55,199)
( 56,200)( 57,201)( 58,207)( 59,205)( 60,206)( 61,203)( 62,204)( 63,202)
( 64,190)( 65,191)( 66,192)( 67,198)( 68,196)( 69,197)( 70,194)( 71,195)
( 72,193)( 73,208)( 74,209)( 75,210)( 76,216)( 77,214)( 78,215)( 79,212)
( 80,213)( 81,211)( 82,172)( 83,173)( 84,174)( 85,180)( 86,178)( 87,179)
( 88,176)( 89,177)( 90,175)( 91,163)( 92,164)( 93,165)( 94,171)( 95,169)
( 96,170)( 97,167)( 98,168)( 99,166)(100,181)(101,182)(102,183)(103,189)
(104,187)(105,188)(106,185)(107,186)(108,184);
s2 := Sym(218)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)
( 53, 54)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)( 66, 68)
( 71, 72)( 73, 76)( 74, 78)( 75, 77)( 80, 81)( 82, 85)( 83, 87)( 84, 86)
( 89, 90)( 91, 94)( 92, 96)( 93, 95)( 98, 99)(100,103)(101,105)(102,104)
(107,108)(109,112)(110,114)(111,113)(116,117)(118,121)(119,123)(120,122)
(125,126)(127,130)(128,132)(129,131)(134,135)(136,139)(137,141)(138,140)
(143,144)(145,148)(146,150)(147,149)(152,153)(154,157)(155,159)(156,158)
(161,162)(163,166)(164,168)(165,167)(170,171)(172,175)(173,177)(174,176)
(179,180)(181,184)(182,186)(183,185)(188,189)(190,193)(191,195)(192,194)
(197,198)(199,202)(200,204)(201,203)(206,207)(208,211)(209,213)(210,212)
(215,216);
s3 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope