Questions?
See the FAQ
or other info.

Polytope of Type {9,2,8,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,8,6}*1728
if this polytope has a name.
Group : SmallGroup(1728,15957)
Rank : 5
Schlafli Type : {9,2,8,6}
Number of vertices, edges, etc : 9, 9, 8, 24, 6
Order of s0s1s2s3s4 : 72
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {9,2,4,6}*864a
   3-fold quotients : {9,2,8,2}*576, {3,2,8,6}*576
   4-fold quotients : {9,2,2,6}*432
   6-fold quotients : {9,2,4,2}*288, {3,2,4,6}*288a
   8-fold quotients : {9,2,2,3}*216
   9-fold quotients : {3,2,8,2}*192
   12-fold quotients : {9,2,2,2}*144, {3,2,2,6}*144
   18-fold quotients : {3,2,4,2}*96
   24-fold quotients : {3,2,2,3}*72
   36-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,14)(15,18)(16,19)(17,20)(21,24)(22,25)(23,26)(27,30)(28,31);;
s3 := (10,11)(12,16)(13,15)(14,17)(18,22)(19,21)(20,23)(24,28)(25,27)(26,29)
(30,33)(31,32);;
s4 := (10,12)(11,15)(14,18)(17,21)(20,24)(23,27)(26,30)(29,32);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(33)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(33)!(11,14)(15,18)(16,19)(17,20)(21,24)(22,25)(23,26)(27,30)(28,31);
s3 := Sym(33)!(10,11)(12,16)(13,15)(14,17)(18,22)(19,21)(20,23)(24,28)(25,27)
(26,29)(30,33)(31,32);
s4 := Sym(33)!(10,12)(11,15)(14,18)(17,21)(20,24)(23,27)(26,30)(29,32);
poly := sub<Sym(33)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope