Questions?
See the FAQ
or other info.

Polytope of Type {8,6,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6,6,3}*1728a
if this polytope has a name.
Group : SmallGroup(1728,15977)
Rank : 5
Schlafli Type : {8,6,6,3}
Number of vertices, edges, etc : 8, 24, 18, 9, 3
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,6,3}*864a
   3-fold quotients : {8,6,2,3}*576
   4-fold quotients : {2,6,6,3}*432a
   6-fold quotients : {4,6,2,3}*288a
   8-fold quotients : {2,3,6,3}*216
   9-fold quotients : {8,2,2,3}*192
   12-fold quotients : {2,6,2,3}*144
   18-fold quotients : {4,2,2,3}*96
   24-fold quotients : {2,3,2,3}*72
   36-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)( 61, 88)( 62, 89)
( 63, 90)( 64, 91)( 65, 92)( 66, 93)( 67, 94)( 68, 95)( 69, 96)( 70, 97)
( 71, 98)( 72, 99)( 73,100)( 74,101)( 75,102)( 76,103)( 77,104)( 78,105)
( 79,106)( 80,107)( 81,108)(109,163)(110,164)(111,165)(112,166)(113,167)
(114,168)(115,169)(116,170)(117,171)(118,172)(119,173)(120,174)(121,175)
(122,176)(123,177)(124,178)(125,179)(126,180)(127,181)(128,182)(129,183)
(130,184)(131,185)(132,186)(133,187)(134,188)(135,189)(136,190)(137,191)
(138,192)(139,193)(140,194)(141,195)(142,196)(143,197)(144,198)(145,199)
(146,200)(147,201)(148,202)(149,203)(150,204)(151,205)(152,206)(153,207)
(154,208)(155,209)(156,210)(157,211)(158,212)(159,213)(160,214)(161,215)
(162,216);;
s1 := (  1,109)(  2,111)(  3,110)(  4,112)(  5,114)(  6,113)(  7,115)(  8,117)
(  9,116)( 10,127)( 11,129)( 12,128)( 13,130)( 14,132)( 15,131)( 16,133)
( 17,135)( 18,134)( 19,118)( 20,120)( 21,119)( 22,121)( 23,123)( 24,122)
( 25,124)( 26,126)( 27,125)( 28,136)( 29,138)( 30,137)( 31,139)( 32,141)
( 33,140)( 34,142)( 35,144)( 36,143)( 37,154)( 38,156)( 39,155)( 40,157)
( 41,159)( 42,158)( 43,160)( 44,162)( 45,161)( 46,145)( 47,147)( 48,146)
( 49,148)( 50,150)( 51,149)( 52,151)( 53,153)( 54,152)( 55,190)( 56,192)
( 57,191)( 58,193)( 59,195)( 60,194)( 61,196)( 62,198)( 63,197)( 64,208)
( 65,210)( 66,209)( 67,211)( 68,213)( 69,212)( 70,214)( 71,216)( 72,215)
( 73,199)( 74,201)( 75,200)( 76,202)( 77,204)( 78,203)( 79,205)( 80,207)
( 81,206)( 82,163)( 83,165)( 84,164)( 85,166)( 86,168)( 87,167)( 88,169)
( 89,171)( 90,170)( 91,181)( 92,183)( 93,182)( 94,184)( 95,186)( 96,185)
( 97,187)( 98,189)( 99,188)(100,172)(101,174)(102,173)(103,175)(104,177)
(105,176)(106,178)(107,180)(108,179);;
s2 := (  1, 10)(  2, 12)(  3, 11)(  4, 14)(  5, 13)(  6, 15)(  7, 18)(  8, 17)
(  9, 16)( 20, 21)( 22, 23)( 25, 27)( 28, 37)( 29, 39)( 30, 38)( 31, 41)
( 32, 40)( 33, 42)( 34, 45)( 35, 44)( 36, 43)( 47, 48)( 49, 50)( 52, 54)
( 55, 64)( 56, 66)( 57, 65)( 58, 68)( 59, 67)( 60, 69)( 61, 72)( 62, 71)
( 63, 70)( 74, 75)( 76, 77)( 79, 81)( 82, 91)( 83, 93)( 84, 92)( 85, 95)
( 86, 94)( 87, 96)( 88, 99)( 89, 98)( 90, 97)(101,102)(103,104)(106,108)
(109,118)(110,120)(111,119)(112,122)(113,121)(114,123)(115,126)(116,125)
(117,124)(128,129)(130,131)(133,135)(136,145)(137,147)(138,146)(139,149)
(140,148)(141,150)(142,153)(143,152)(144,151)(155,156)(157,158)(160,162)
(163,172)(164,174)(165,173)(166,176)(167,175)(168,177)(169,180)(170,179)
(171,178)(182,183)(184,185)(187,189)(190,199)(191,201)(192,200)(193,203)
(194,202)(195,204)(196,207)(197,206)(198,205)(209,210)(211,212)(214,216);;
s3 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)( 35, 36)
( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)( 53, 54)
( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)( 66, 68)( 71, 72)
( 73, 76)( 74, 78)( 75, 77)( 80, 81)( 82, 85)( 83, 87)( 84, 86)( 89, 90)
( 91, 94)( 92, 96)( 93, 95)( 98, 99)(100,103)(101,105)(102,104)(107,108)
(109,112)(110,114)(111,113)(116,117)(118,121)(119,123)(120,122)(125,126)
(127,130)(128,132)(129,131)(134,135)(136,139)(137,141)(138,140)(143,144)
(145,148)(146,150)(147,149)(152,153)(154,157)(155,159)(156,158)(161,162)
(163,166)(164,168)(165,167)(170,171)(172,175)(173,177)(174,176)(179,180)
(181,184)(182,186)(183,185)(188,189)(190,193)(191,195)(192,194)(197,198)
(199,202)(200,204)(201,203)(206,207)(208,211)(209,213)(210,212)(215,216);;
s4 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)( 51, 53)
( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)( 69, 71)
( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)( 87, 89)
( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)(105,107)
(110,111)(112,115)(113,117)(114,116)(119,120)(121,124)(122,126)(123,125)
(128,129)(130,133)(131,135)(132,134)(137,138)(139,142)(140,144)(141,143)
(146,147)(148,151)(149,153)(150,152)(155,156)(157,160)(158,162)(159,161)
(164,165)(166,169)(167,171)(168,170)(173,174)(175,178)(176,180)(177,179)
(182,183)(184,187)(185,189)(186,188)(191,192)(193,196)(194,198)(195,197)
(200,201)(202,205)(203,207)(204,206)(209,210)(211,214)(212,216)(213,215);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)( 61, 88)
( 62, 89)( 63, 90)( 64, 91)( 65, 92)( 66, 93)( 67, 94)( 68, 95)( 69, 96)
( 70, 97)( 71, 98)( 72, 99)( 73,100)( 74,101)( 75,102)( 76,103)( 77,104)
( 78,105)( 79,106)( 80,107)( 81,108)(109,163)(110,164)(111,165)(112,166)
(113,167)(114,168)(115,169)(116,170)(117,171)(118,172)(119,173)(120,174)
(121,175)(122,176)(123,177)(124,178)(125,179)(126,180)(127,181)(128,182)
(129,183)(130,184)(131,185)(132,186)(133,187)(134,188)(135,189)(136,190)
(137,191)(138,192)(139,193)(140,194)(141,195)(142,196)(143,197)(144,198)
(145,199)(146,200)(147,201)(148,202)(149,203)(150,204)(151,205)(152,206)
(153,207)(154,208)(155,209)(156,210)(157,211)(158,212)(159,213)(160,214)
(161,215)(162,216);
s1 := Sym(216)!(  1,109)(  2,111)(  3,110)(  4,112)(  5,114)(  6,113)(  7,115)
(  8,117)(  9,116)( 10,127)( 11,129)( 12,128)( 13,130)( 14,132)( 15,131)
( 16,133)( 17,135)( 18,134)( 19,118)( 20,120)( 21,119)( 22,121)( 23,123)
( 24,122)( 25,124)( 26,126)( 27,125)( 28,136)( 29,138)( 30,137)( 31,139)
( 32,141)( 33,140)( 34,142)( 35,144)( 36,143)( 37,154)( 38,156)( 39,155)
( 40,157)( 41,159)( 42,158)( 43,160)( 44,162)( 45,161)( 46,145)( 47,147)
( 48,146)( 49,148)( 50,150)( 51,149)( 52,151)( 53,153)( 54,152)( 55,190)
( 56,192)( 57,191)( 58,193)( 59,195)( 60,194)( 61,196)( 62,198)( 63,197)
( 64,208)( 65,210)( 66,209)( 67,211)( 68,213)( 69,212)( 70,214)( 71,216)
( 72,215)( 73,199)( 74,201)( 75,200)( 76,202)( 77,204)( 78,203)( 79,205)
( 80,207)( 81,206)( 82,163)( 83,165)( 84,164)( 85,166)( 86,168)( 87,167)
( 88,169)( 89,171)( 90,170)( 91,181)( 92,183)( 93,182)( 94,184)( 95,186)
( 96,185)( 97,187)( 98,189)( 99,188)(100,172)(101,174)(102,173)(103,175)
(104,177)(105,176)(106,178)(107,180)(108,179);
s2 := Sym(216)!(  1, 10)(  2, 12)(  3, 11)(  4, 14)(  5, 13)(  6, 15)(  7, 18)
(  8, 17)(  9, 16)( 20, 21)( 22, 23)( 25, 27)( 28, 37)( 29, 39)( 30, 38)
( 31, 41)( 32, 40)( 33, 42)( 34, 45)( 35, 44)( 36, 43)( 47, 48)( 49, 50)
( 52, 54)( 55, 64)( 56, 66)( 57, 65)( 58, 68)( 59, 67)( 60, 69)( 61, 72)
( 62, 71)( 63, 70)( 74, 75)( 76, 77)( 79, 81)( 82, 91)( 83, 93)( 84, 92)
( 85, 95)( 86, 94)( 87, 96)( 88, 99)( 89, 98)( 90, 97)(101,102)(103,104)
(106,108)(109,118)(110,120)(111,119)(112,122)(113,121)(114,123)(115,126)
(116,125)(117,124)(128,129)(130,131)(133,135)(136,145)(137,147)(138,146)
(139,149)(140,148)(141,150)(142,153)(143,152)(144,151)(155,156)(157,158)
(160,162)(163,172)(164,174)(165,173)(166,176)(167,175)(168,177)(169,180)
(170,179)(171,178)(182,183)(184,185)(187,189)(190,199)(191,201)(192,200)
(193,203)(194,202)(195,204)(196,207)(197,206)(198,205)(209,210)(211,212)
(214,216);
s3 := Sym(216)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)
( 53, 54)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)( 66, 68)
( 71, 72)( 73, 76)( 74, 78)( 75, 77)( 80, 81)( 82, 85)( 83, 87)( 84, 86)
( 89, 90)( 91, 94)( 92, 96)( 93, 95)( 98, 99)(100,103)(101,105)(102,104)
(107,108)(109,112)(110,114)(111,113)(116,117)(118,121)(119,123)(120,122)
(125,126)(127,130)(128,132)(129,131)(134,135)(136,139)(137,141)(138,140)
(143,144)(145,148)(146,150)(147,149)(152,153)(154,157)(155,159)(156,158)
(161,162)(163,166)(164,168)(165,167)(170,171)(172,175)(173,177)(174,176)
(179,180)(181,184)(182,186)(183,185)(188,189)(190,193)(191,195)(192,194)
(197,198)(199,202)(200,204)(201,203)(206,207)(208,211)(209,213)(210,212)
(215,216);
s4 := Sym(216)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)
( 51, 53)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)
( 69, 71)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)
( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)
(105,107)(110,111)(112,115)(113,117)(114,116)(119,120)(121,124)(122,126)
(123,125)(128,129)(130,133)(131,135)(132,134)(137,138)(139,142)(140,144)
(141,143)(146,147)(148,151)(149,153)(150,152)(155,156)(157,160)(158,162)
(159,161)(164,165)(166,169)(167,171)(168,170)(173,174)(175,178)(176,180)
(177,179)(182,183)(184,187)(185,189)(186,188)(191,192)(193,196)(194,198)
(195,197)(200,201)(202,205)(203,207)(204,206)(209,210)(211,214)(212,216)
(213,215);
poly := sub<Sym(216)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope