Questions?
See the FAQ
or other info.

Polytope of Type {2,18,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,24}*1728b
if this polytope has a name.
Group : SmallGroup(1728,17171)
Rank : 4
Schlafli Type : {2,18,24}
Number of vertices, edges, etc : 2, 18, 216, 24
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,18,12}*864b
   3-fold quotients : {2,18,8}*576, {2,6,24}*576c
   4-fold quotients : {2,18,6}*432b
   6-fold quotients : {2,18,4}*288a, {2,6,12}*288c
   8-fold quotients : {2,9,6}*216
   9-fold quotients : {2,6,8}*192
   12-fold quotients : {2,18,2}*144, {2,6,6}*144c
   18-fold quotients : {2,6,4}*96a
   24-fold quotients : {2,9,2}*72, {2,3,6}*72
   27-fold quotients : {2,2,8}*64
   36-fold quotients : {2,6,2}*48
   54-fold quotients : {2,2,4}*32
   72-fold quotients : {2,3,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  6,  9)(  7, 11)(  8, 10)( 12, 23)( 13, 22)( 14, 21)( 15, 29)
( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 31, 32)( 33, 36)( 34, 38)
( 35, 37)( 39, 50)( 40, 49)( 41, 48)( 42, 56)( 43, 55)( 44, 54)( 45, 53)
( 46, 52)( 47, 51)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 66, 77)( 67, 76)
( 68, 75)( 69, 83)( 70, 82)( 71, 81)( 72, 80)( 73, 79)( 74, 78)( 85, 86)
( 87, 90)( 88, 92)( 89, 91)( 93,104)( 94,103)( 95,102)( 96,110)( 97,109)
( 98,108)( 99,107)(100,106)(101,105)(112,113)(114,117)(115,119)(116,118)
(120,131)(121,130)(122,129)(123,137)(124,136)(125,135)(126,134)(127,133)
(128,132)(139,140)(141,144)(142,146)(143,145)(147,158)(148,157)(149,156)
(150,164)(151,163)(152,162)(153,161)(154,160)(155,159)(166,167)(168,171)
(169,173)(170,172)(174,185)(175,184)(176,183)(177,191)(178,190)(179,189)
(180,188)(181,187)(182,186)(193,194)(195,198)(196,200)(197,199)(201,212)
(202,211)(203,210)(204,218)(205,217)(206,216)(207,215)(208,214)(209,213);;
s2 := (  3,123)(  4,125)(  5,124)(  6,120)(  7,122)(  8,121)(  9,126)( 10,128)
( 11,127)( 12,114)( 13,116)( 14,115)( 15,111)( 16,113)( 17,112)( 18,117)
( 19,119)( 20,118)( 21,134)( 22,133)( 23,132)( 24,131)( 25,130)( 26,129)
( 27,137)( 28,136)( 29,135)( 30,150)( 31,152)( 32,151)( 33,147)( 34,149)
( 35,148)( 36,153)( 37,155)( 38,154)( 39,141)( 40,143)( 41,142)( 42,138)
( 43,140)( 44,139)( 45,144)( 46,146)( 47,145)( 48,161)( 49,160)( 50,159)
( 51,158)( 52,157)( 53,156)( 54,164)( 55,163)( 56,162)( 57,204)( 58,206)
( 59,205)( 60,201)( 61,203)( 62,202)( 63,207)( 64,209)( 65,208)( 66,195)
( 67,197)( 68,196)( 69,192)( 70,194)( 71,193)( 72,198)( 73,200)( 74,199)
( 75,215)( 76,214)( 77,213)( 78,212)( 79,211)( 80,210)( 81,218)( 82,217)
( 83,216)( 84,177)( 85,179)( 86,178)( 87,174)( 88,176)( 89,175)( 90,180)
( 91,182)( 92,181)( 93,168)( 94,170)( 95,169)( 96,165)( 97,167)( 98,166)
( 99,171)(100,173)(101,172)(102,188)(103,187)(104,186)(105,185)(106,184)
(107,183)(108,191)(109,190)(110,189);;
s3 := (  6,  9)(  7, 10)(  8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)( 25, 28)
( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)( 51, 54)
( 52, 55)( 53, 56)( 57, 84)( 58, 85)( 59, 86)( 60, 90)( 61, 91)( 62, 92)
( 63, 87)( 64, 88)( 65, 89)( 66, 93)( 67, 94)( 68, 95)( 69, 99)( 70,100)
( 71,101)( 72, 96)( 73, 97)( 74, 98)( 75,102)( 76,103)( 77,104)( 78,108)
( 79,109)( 80,110)( 81,105)( 82,106)( 83,107)(111,165)(112,166)(113,167)
(114,171)(115,172)(116,173)(117,168)(118,169)(119,170)(120,174)(121,175)
(122,176)(123,180)(124,181)(125,182)(126,177)(127,178)(128,179)(129,183)
(130,184)(131,185)(132,189)(133,190)(134,191)(135,186)(136,187)(137,188)
(138,192)(139,193)(140,194)(141,198)(142,199)(143,200)(144,195)(145,196)
(146,197)(147,201)(148,202)(149,203)(150,207)(151,208)(152,209)(153,204)
(154,205)(155,206)(156,210)(157,211)(158,212)(159,216)(160,217)(161,218)
(162,213)(163,214)(164,215);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(218)!(1,2);
s1 := Sym(218)!(  4,  5)(  6,  9)(  7, 11)(  8, 10)( 12, 23)( 13, 22)( 14, 21)
( 15, 29)( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 31, 32)( 33, 36)
( 34, 38)( 35, 37)( 39, 50)( 40, 49)( 41, 48)( 42, 56)( 43, 55)( 44, 54)
( 45, 53)( 46, 52)( 47, 51)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 66, 77)
( 67, 76)( 68, 75)( 69, 83)( 70, 82)( 71, 81)( 72, 80)( 73, 79)( 74, 78)
( 85, 86)( 87, 90)( 88, 92)( 89, 91)( 93,104)( 94,103)( 95,102)( 96,110)
( 97,109)( 98,108)( 99,107)(100,106)(101,105)(112,113)(114,117)(115,119)
(116,118)(120,131)(121,130)(122,129)(123,137)(124,136)(125,135)(126,134)
(127,133)(128,132)(139,140)(141,144)(142,146)(143,145)(147,158)(148,157)
(149,156)(150,164)(151,163)(152,162)(153,161)(154,160)(155,159)(166,167)
(168,171)(169,173)(170,172)(174,185)(175,184)(176,183)(177,191)(178,190)
(179,189)(180,188)(181,187)(182,186)(193,194)(195,198)(196,200)(197,199)
(201,212)(202,211)(203,210)(204,218)(205,217)(206,216)(207,215)(208,214)
(209,213);
s2 := Sym(218)!(  3,123)(  4,125)(  5,124)(  6,120)(  7,122)(  8,121)(  9,126)
( 10,128)( 11,127)( 12,114)( 13,116)( 14,115)( 15,111)( 16,113)( 17,112)
( 18,117)( 19,119)( 20,118)( 21,134)( 22,133)( 23,132)( 24,131)( 25,130)
( 26,129)( 27,137)( 28,136)( 29,135)( 30,150)( 31,152)( 32,151)( 33,147)
( 34,149)( 35,148)( 36,153)( 37,155)( 38,154)( 39,141)( 40,143)( 41,142)
( 42,138)( 43,140)( 44,139)( 45,144)( 46,146)( 47,145)( 48,161)( 49,160)
( 50,159)( 51,158)( 52,157)( 53,156)( 54,164)( 55,163)( 56,162)( 57,204)
( 58,206)( 59,205)( 60,201)( 61,203)( 62,202)( 63,207)( 64,209)( 65,208)
( 66,195)( 67,197)( 68,196)( 69,192)( 70,194)( 71,193)( 72,198)( 73,200)
( 74,199)( 75,215)( 76,214)( 77,213)( 78,212)( 79,211)( 80,210)( 81,218)
( 82,217)( 83,216)( 84,177)( 85,179)( 86,178)( 87,174)( 88,176)( 89,175)
( 90,180)( 91,182)( 92,181)( 93,168)( 94,170)( 95,169)( 96,165)( 97,167)
( 98,166)( 99,171)(100,173)(101,172)(102,188)(103,187)(104,186)(105,185)
(106,184)(107,183)(108,191)(109,190)(110,189);
s3 := Sym(218)!(  6,  9)(  7, 10)(  8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)
( 25, 28)( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)
( 51, 54)( 52, 55)( 53, 56)( 57, 84)( 58, 85)( 59, 86)( 60, 90)( 61, 91)
( 62, 92)( 63, 87)( 64, 88)( 65, 89)( 66, 93)( 67, 94)( 68, 95)( 69, 99)
( 70,100)( 71,101)( 72, 96)( 73, 97)( 74, 98)( 75,102)( 76,103)( 77,104)
( 78,108)( 79,109)( 80,110)( 81,105)( 82,106)( 83,107)(111,165)(112,166)
(113,167)(114,171)(115,172)(116,173)(117,168)(118,169)(119,170)(120,174)
(121,175)(122,176)(123,180)(124,181)(125,182)(126,177)(127,178)(128,179)
(129,183)(130,184)(131,185)(132,189)(133,190)(134,191)(135,186)(136,187)
(137,188)(138,192)(139,193)(140,194)(141,198)(142,199)(143,200)(144,195)
(145,196)(146,197)(147,201)(148,202)(149,203)(150,207)(151,208)(152,209)
(153,204)(154,205)(155,206)(156,210)(157,211)(158,212)(159,216)(160,217)
(161,218)(162,213)(163,214)(164,215);
poly := sub<Sym(218)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope