Questions?
See the FAQ
or other info.

Polytope of Type {8,2,54}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,2,54}*1728
if this polytope has a name.
Group : SmallGroup(1728,2555)
Rank : 4
Schlafli Type : {8,2,54}
Number of vertices, edges, etc : 8, 8, 54, 54
Order of s0s1s2s3 : 216
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,2,27}*864, {4,2,54}*864
   3-fold quotients : {8,2,18}*576
   4-fold quotients : {4,2,27}*432, {2,2,54}*432
   6-fold quotients : {8,2,9}*288, {4,2,18}*288
   8-fold quotients : {2,2,27}*216
   9-fold quotients : {8,2,6}*192
   12-fold quotients : {4,2,9}*144, {2,2,18}*144
   18-fold quotients : {8,2,3}*96, {4,2,6}*96
   24-fold quotients : {2,2,9}*72
   27-fold quotients : {8,2,2}*64
   36-fold quotients : {4,2,3}*48, {2,2,6}*48
   54-fold quotients : {4,2,2}*32
   72-fold quotients : {2,2,3}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)
(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)
(53,54)(55,56)(57,58)(59,60)(61,62);;
s3 := ( 9,13)(10,11)(12,17)(14,15)(16,21)(18,19)(20,25)(22,23)(24,29)(26,27)
(28,33)(30,31)(32,37)(34,35)(36,41)(38,39)(40,45)(42,43)(44,49)(46,47)(48,53)
(50,51)(52,57)(54,55)(56,61)(58,59)(60,62);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(62)!(2,3)(4,5)(6,7);
s1 := Sym(62)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(62)!(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)
(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)
(51,52)(53,54)(55,56)(57,58)(59,60)(61,62);
s3 := Sym(62)!( 9,13)(10,11)(12,17)(14,15)(16,21)(18,19)(20,25)(22,23)(24,29)
(26,27)(28,33)(30,31)(32,37)(34,35)(36,41)(38,39)(40,45)(42,43)(44,49)(46,47)
(48,53)(50,51)(52,57)(54,55)(56,61)(58,59)(60,62);
poly := sub<Sym(62)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope