Questions?
See the FAQ
or other info.

Polytope of Type {6,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,36}*1728c
if this polytope has a name.
Group : SmallGroup(1728,30201)
Rank : 3
Schlafli Type : {6,36}
Number of vertices, edges, etc : 24, 432, 144
Order of s0s1s2 : 72
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,18}*864
   3-fold quotients : {6,12}*576d
   4-fold quotients : {6,9}*432
   6-fold quotients : {6,6}*288a
   8-fold quotients : {6,18}*216b
   9-fold quotients : {6,12}*192b
   12-fold quotients : {6,3}*144
   16-fold quotients : {6,9}*108
   18-fold quotients : {3,12}*96, {6,6}*96
   24-fold quotients : {2,18}*72, {6,6}*72b
   36-fold quotients : {3,6}*48, {6,3}*48
   48-fold quotients : {2,9}*36, {6,3}*36
   72-fold quotients : {3,3}*24, {2,6}*24
   144-fold quotients : {2,3}*12
   216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)( 21, 23)
( 22, 24)( 27, 28)( 29, 31)( 30, 32)( 35, 36)( 37, 39)( 38, 40)( 43, 44)
( 45, 47)( 46, 48)( 51, 52)( 53, 55)( 54, 56)( 59, 60)( 61, 63)( 62, 64)
( 67, 68)( 69, 71)( 70, 72)( 73,145)( 74,146)( 75,148)( 76,147)( 77,151)
( 78,152)( 79,149)( 80,150)( 81,153)( 82,154)( 83,156)( 84,155)( 85,159)
( 86,160)( 87,157)( 88,158)( 89,161)( 90,162)( 91,164)( 92,163)( 93,167)
( 94,168)( 95,165)( 96,166)( 97,169)( 98,170)( 99,172)(100,171)(101,175)
(102,176)(103,173)(104,174)(105,177)(106,178)(107,180)(108,179)(109,183)
(110,184)(111,181)(112,182)(113,185)(114,186)(115,188)(116,187)(117,191)
(118,192)(119,189)(120,190)(121,193)(122,194)(123,196)(124,195)(125,199)
(126,200)(127,197)(128,198)(129,201)(130,202)(131,204)(132,203)(133,207)
(134,208)(135,205)(136,206)(137,209)(138,210)(139,212)(140,211)(141,215)
(142,216)(143,213)(144,214)(217,218)(221,224)(222,223)(225,226)(229,232)
(230,231)(233,234)(237,240)(238,239)(241,242)(245,248)(246,247)(249,250)
(253,256)(254,255)(257,258)(261,264)(262,263)(265,266)(269,272)(270,271)
(273,274)(277,280)(278,279)(281,282)(285,288)(286,287)(289,362)(290,361)
(291,363)(292,364)(293,368)(294,367)(295,366)(296,365)(297,370)(298,369)
(299,371)(300,372)(301,376)(302,375)(303,374)(304,373)(305,378)(306,377)
(307,379)(308,380)(309,384)(310,383)(311,382)(312,381)(313,386)(314,385)
(315,387)(316,388)(317,392)(318,391)(319,390)(320,389)(321,394)(322,393)
(323,395)(324,396)(325,400)(326,399)(327,398)(328,397)(329,402)(330,401)
(331,403)(332,404)(333,408)(334,407)(335,406)(336,405)(337,410)(338,409)
(339,411)(340,412)(341,416)(342,415)(343,414)(344,413)(345,418)(346,417)
(347,419)(348,420)(349,424)(350,423)(351,422)(352,421)(353,426)(354,425)
(355,427)(356,428)(357,432)(358,431)(359,430)(360,429);;
s1 := (  1, 73)(  2, 74)(  3, 79)(  4, 80)(  5, 78)(  6, 77)(  7, 75)(  8, 76)
(  9, 89)( 10, 90)( 11, 95)( 12, 96)( 13, 94)( 14, 93)( 15, 91)( 16, 92)
( 17, 81)( 18, 82)( 19, 87)( 20, 88)( 21, 86)( 22, 85)( 23, 83)( 24, 84)
( 25,137)( 26,138)( 27,143)( 28,144)( 29,142)( 30,141)( 31,139)( 32,140)
( 33,129)( 34,130)( 35,135)( 36,136)( 37,134)( 38,133)( 39,131)( 40,132)
( 41,121)( 42,122)( 43,127)( 44,128)( 45,126)( 46,125)( 47,123)( 48,124)
( 49,113)( 50,114)( 51,119)( 52,120)( 53,118)( 54,117)( 55,115)( 56,116)
( 57,105)( 58,106)( 59,111)( 60,112)( 61,110)( 62,109)( 63,107)( 64,108)
( 65, 97)( 66, 98)( 67,103)( 68,104)( 69,102)( 70,101)( 71, 99)( 72,100)
(147,151)(148,152)(149,150)(153,161)(154,162)(155,167)(156,168)(157,166)
(158,165)(159,163)(160,164)(169,209)(170,210)(171,215)(172,216)(173,214)
(174,213)(175,211)(176,212)(177,201)(178,202)(179,207)(180,208)(181,206)
(182,205)(183,203)(184,204)(185,193)(186,194)(187,199)(188,200)(189,198)
(190,197)(191,195)(192,196)(217,290)(218,289)(219,296)(220,295)(221,293)
(222,294)(223,292)(224,291)(225,306)(226,305)(227,312)(228,311)(229,309)
(230,310)(231,308)(232,307)(233,298)(234,297)(235,304)(236,303)(237,301)
(238,302)(239,300)(240,299)(241,354)(242,353)(243,360)(244,359)(245,357)
(246,358)(247,356)(248,355)(249,346)(250,345)(251,352)(252,351)(253,349)
(254,350)(255,348)(256,347)(257,338)(258,337)(259,344)(260,343)(261,341)
(262,342)(263,340)(264,339)(265,330)(266,329)(267,336)(268,335)(269,333)
(270,334)(271,332)(272,331)(273,322)(274,321)(275,328)(276,327)(277,325)
(278,326)(279,324)(280,323)(281,314)(282,313)(283,320)(284,319)(285,317)
(286,318)(287,316)(288,315)(361,362)(363,368)(364,367)(369,378)(370,377)
(371,384)(372,383)(373,381)(374,382)(375,380)(376,379)(385,426)(386,425)
(387,432)(388,431)(389,429)(390,430)(391,428)(392,427)(393,418)(394,417)
(395,424)(396,423)(397,421)(398,422)(399,420)(400,419)(401,410)(402,409)
(403,416)(404,415)(405,413)(406,414)(407,412)(408,411);;
s2 := (  1,243)(  2,244)(  3,241)(  4,242)(  5,246)(  6,245)(  7,247)(  8,248)
(  9,259)( 10,260)( 11,257)( 12,258)( 13,262)( 14,261)( 15,263)( 16,264)
( 17,251)( 18,252)( 19,249)( 20,250)( 21,254)( 22,253)( 23,255)( 24,256)
( 25,219)( 26,220)( 27,217)( 28,218)( 29,222)( 30,221)( 31,223)( 32,224)
( 33,235)( 34,236)( 35,233)( 36,234)( 37,238)( 38,237)( 39,239)( 40,240)
( 41,227)( 42,228)( 43,225)( 44,226)( 45,230)( 46,229)( 47,231)( 48,232)
( 49,283)( 50,284)( 51,281)( 52,282)( 53,286)( 54,285)( 55,287)( 56,288)
( 57,275)( 58,276)( 59,273)( 60,274)( 61,278)( 62,277)( 63,279)( 64,280)
( 65,267)( 66,268)( 67,265)( 68,266)( 69,270)( 70,269)( 71,271)( 72,272)
( 73,387)( 74,388)( 75,385)( 76,386)( 77,390)( 78,389)( 79,391)( 80,392)
( 81,403)( 82,404)( 83,401)( 84,402)( 85,406)( 86,405)( 87,407)( 88,408)
( 89,395)( 90,396)( 91,393)( 92,394)( 93,398)( 94,397)( 95,399)( 96,400)
( 97,363)( 98,364)( 99,361)(100,362)(101,366)(102,365)(103,367)(104,368)
(105,379)(106,380)(107,377)(108,378)(109,382)(110,381)(111,383)(112,384)
(113,371)(114,372)(115,369)(116,370)(117,374)(118,373)(119,375)(120,376)
(121,427)(122,428)(123,425)(124,426)(125,430)(126,429)(127,431)(128,432)
(129,419)(130,420)(131,417)(132,418)(133,422)(134,421)(135,423)(136,424)
(137,411)(138,412)(139,409)(140,410)(141,414)(142,413)(143,415)(144,416)
(145,315)(146,316)(147,313)(148,314)(149,318)(150,317)(151,319)(152,320)
(153,331)(154,332)(155,329)(156,330)(157,334)(158,333)(159,335)(160,336)
(161,323)(162,324)(163,321)(164,322)(165,326)(166,325)(167,327)(168,328)
(169,291)(170,292)(171,289)(172,290)(173,294)(174,293)(175,295)(176,296)
(177,307)(178,308)(179,305)(180,306)(181,310)(182,309)(183,311)(184,312)
(185,299)(186,300)(187,297)(188,298)(189,302)(190,301)(191,303)(192,304)
(193,355)(194,356)(195,353)(196,354)(197,358)(198,357)(199,359)(200,360)
(201,347)(202,348)(203,345)(204,346)(205,350)(206,349)(207,351)(208,352)
(209,339)(210,340)(211,337)(212,338)(213,342)(214,341)(215,343)(216,344);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)
( 21, 23)( 22, 24)( 27, 28)( 29, 31)( 30, 32)( 35, 36)( 37, 39)( 38, 40)
( 43, 44)( 45, 47)( 46, 48)( 51, 52)( 53, 55)( 54, 56)( 59, 60)( 61, 63)
( 62, 64)( 67, 68)( 69, 71)( 70, 72)( 73,145)( 74,146)( 75,148)( 76,147)
( 77,151)( 78,152)( 79,149)( 80,150)( 81,153)( 82,154)( 83,156)( 84,155)
( 85,159)( 86,160)( 87,157)( 88,158)( 89,161)( 90,162)( 91,164)( 92,163)
( 93,167)( 94,168)( 95,165)( 96,166)( 97,169)( 98,170)( 99,172)(100,171)
(101,175)(102,176)(103,173)(104,174)(105,177)(106,178)(107,180)(108,179)
(109,183)(110,184)(111,181)(112,182)(113,185)(114,186)(115,188)(116,187)
(117,191)(118,192)(119,189)(120,190)(121,193)(122,194)(123,196)(124,195)
(125,199)(126,200)(127,197)(128,198)(129,201)(130,202)(131,204)(132,203)
(133,207)(134,208)(135,205)(136,206)(137,209)(138,210)(139,212)(140,211)
(141,215)(142,216)(143,213)(144,214)(217,218)(221,224)(222,223)(225,226)
(229,232)(230,231)(233,234)(237,240)(238,239)(241,242)(245,248)(246,247)
(249,250)(253,256)(254,255)(257,258)(261,264)(262,263)(265,266)(269,272)
(270,271)(273,274)(277,280)(278,279)(281,282)(285,288)(286,287)(289,362)
(290,361)(291,363)(292,364)(293,368)(294,367)(295,366)(296,365)(297,370)
(298,369)(299,371)(300,372)(301,376)(302,375)(303,374)(304,373)(305,378)
(306,377)(307,379)(308,380)(309,384)(310,383)(311,382)(312,381)(313,386)
(314,385)(315,387)(316,388)(317,392)(318,391)(319,390)(320,389)(321,394)
(322,393)(323,395)(324,396)(325,400)(326,399)(327,398)(328,397)(329,402)
(330,401)(331,403)(332,404)(333,408)(334,407)(335,406)(336,405)(337,410)
(338,409)(339,411)(340,412)(341,416)(342,415)(343,414)(344,413)(345,418)
(346,417)(347,419)(348,420)(349,424)(350,423)(351,422)(352,421)(353,426)
(354,425)(355,427)(356,428)(357,432)(358,431)(359,430)(360,429);
s1 := Sym(432)!(  1, 73)(  2, 74)(  3, 79)(  4, 80)(  5, 78)(  6, 77)(  7, 75)
(  8, 76)(  9, 89)( 10, 90)( 11, 95)( 12, 96)( 13, 94)( 14, 93)( 15, 91)
( 16, 92)( 17, 81)( 18, 82)( 19, 87)( 20, 88)( 21, 86)( 22, 85)( 23, 83)
( 24, 84)( 25,137)( 26,138)( 27,143)( 28,144)( 29,142)( 30,141)( 31,139)
( 32,140)( 33,129)( 34,130)( 35,135)( 36,136)( 37,134)( 38,133)( 39,131)
( 40,132)( 41,121)( 42,122)( 43,127)( 44,128)( 45,126)( 46,125)( 47,123)
( 48,124)( 49,113)( 50,114)( 51,119)( 52,120)( 53,118)( 54,117)( 55,115)
( 56,116)( 57,105)( 58,106)( 59,111)( 60,112)( 61,110)( 62,109)( 63,107)
( 64,108)( 65, 97)( 66, 98)( 67,103)( 68,104)( 69,102)( 70,101)( 71, 99)
( 72,100)(147,151)(148,152)(149,150)(153,161)(154,162)(155,167)(156,168)
(157,166)(158,165)(159,163)(160,164)(169,209)(170,210)(171,215)(172,216)
(173,214)(174,213)(175,211)(176,212)(177,201)(178,202)(179,207)(180,208)
(181,206)(182,205)(183,203)(184,204)(185,193)(186,194)(187,199)(188,200)
(189,198)(190,197)(191,195)(192,196)(217,290)(218,289)(219,296)(220,295)
(221,293)(222,294)(223,292)(224,291)(225,306)(226,305)(227,312)(228,311)
(229,309)(230,310)(231,308)(232,307)(233,298)(234,297)(235,304)(236,303)
(237,301)(238,302)(239,300)(240,299)(241,354)(242,353)(243,360)(244,359)
(245,357)(246,358)(247,356)(248,355)(249,346)(250,345)(251,352)(252,351)
(253,349)(254,350)(255,348)(256,347)(257,338)(258,337)(259,344)(260,343)
(261,341)(262,342)(263,340)(264,339)(265,330)(266,329)(267,336)(268,335)
(269,333)(270,334)(271,332)(272,331)(273,322)(274,321)(275,328)(276,327)
(277,325)(278,326)(279,324)(280,323)(281,314)(282,313)(283,320)(284,319)
(285,317)(286,318)(287,316)(288,315)(361,362)(363,368)(364,367)(369,378)
(370,377)(371,384)(372,383)(373,381)(374,382)(375,380)(376,379)(385,426)
(386,425)(387,432)(388,431)(389,429)(390,430)(391,428)(392,427)(393,418)
(394,417)(395,424)(396,423)(397,421)(398,422)(399,420)(400,419)(401,410)
(402,409)(403,416)(404,415)(405,413)(406,414)(407,412)(408,411);
s2 := Sym(432)!(  1,243)(  2,244)(  3,241)(  4,242)(  5,246)(  6,245)(  7,247)
(  8,248)(  9,259)( 10,260)( 11,257)( 12,258)( 13,262)( 14,261)( 15,263)
( 16,264)( 17,251)( 18,252)( 19,249)( 20,250)( 21,254)( 22,253)( 23,255)
( 24,256)( 25,219)( 26,220)( 27,217)( 28,218)( 29,222)( 30,221)( 31,223)
( 32,224)( 33,235)( 34,236)( 35,233)( 36,234)( 37,238)( 38,237)( 39,239)
( 40,240)( 41,227)( 42,228)( 43,225)( 44,226)( 45,230)( 46,229)( 47,231)
( 48,232)( 49,283)( 50,284)( 51,281)( 52,282)( 53,286)( 54,285)( 55,287)
( 56,288)( 57,275)( 58,276)( 59,273)( 60,274)( 61,278)( 62,277)( 63,279)
( 64,280)( 65,267)( 66,268)( 67,265)( 68,266)( 69,270)( 70,269)( 71,271)
( 72,272)( 73,387)( 74,388)( 75,385)( 76,386)( 77,390)( 78,389)( 79,391)
( 80,392)( 81,403)( 82,404)( 83,401)( 84,402)( 85,406)( 86,405)( 87,407)
( 88,408)( 89,395)( 90,396)( 91,393)( 92,394)( 93,398)( 94,397)( 95,399)
( 96,400)( 97,363)( 98,364)( 99,361)(100,362)(101,366)(102,365)(103,367)
(104,368)(105,379)(106,380)(107,377)(108,378)(109,382)(110,381)(111,383)
(112,384)(113,371)(114,372)(115,369)(116,370)(117,374)(118,373)(119,375)
(120,376)(121,427)(122,428)(123,425)(124,426)(125,430)(126,429)(127,431)
(128,432)(129,419)(130,420)(131,417)(132,418)(133,422)(134,421)(135,423)
(136,424)(137,411)(138,412)(139,409)(140,410)(141,414)(142,413)(143,415)
(144,416)(145,315)(146,316)(147,313)(148,314)(149,318)(150,317)(151,319)
(152,320)(153,331)(154,332)(155,329)(156,330)(157,334)(158,333)(159,335)
(160,336)(161,323)(162,324)(163,321)(164,322)(165,326)(166,325)(167,327)
(168,328)(169,291)(170,292)(171,289)(172,290)(173,294)(174,293)(175,295)
(176,296)(177,307)(178,308)(179,305)(180,306)(181,310)(182,309)(183,311)
(184,312)(185,299)(186,300)(187,297)(188,298)(189,302)(190,301)(191,303)
(192,304)(193,355)(194,356)(195,353)(196,354)(197,358)(198,357)(199,359)
(200,360)(201,347)(202,348)(203,345)(204,346)(205,350)(206,349)(207,351)
(208,352)(209,339)(210,340)(211,337)(212,338)(213,342)(214,341)(215,343)
(216,344);
poly := sub<Sym(432)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope