Questions?
See the FAQ
or other info.

# Polytope of Type {4,18,12}

Atlas Canonical Name : {4,18,12}*1728c
if this polytope has a name.
Group : SmallGroup(1728,30229)
Rank : 4
Schlafli Type : {4,18,12}
Number of vertices, edges, etc : 4, 36, 108, 12
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,18,6}*864c
3-fold quotients : {4,18,4}*576c, {4,6,12}*576d
6-fold quotients : {4,18,2}*288b, {4,6,6}*288d
9-fold quotients : {4,6,4}*192c
12-fold quotients : {4,9,2}*144
18-fold quotients : {4,6,2}*96c
36-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320)
(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)(334,336)
(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)(350,352)
(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)(366,368)
(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)(382,384)
(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)(398,400)
(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)(414,416)
(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)(430,432);;
s1 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 37, 81)
( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)( 44, 79)( 45, 73)
( 46, 74)( 47, 76)( 48, 75)( 49, 93)( 50, 94)( 51, 96)( 52, 95)( 53, 89)
( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,105)
( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)( 69, 97)
( 70, 98)( 71,100)( 72, 99)(111,112)(113,117)(114,118)(115,120)(116,119)
(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)(138,142)
(139,144)(140,143)(145,189)(146,190)(147,192)(148,191)(149,185)(150,186)
(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)(157,201)(158,202)
(159,204)(160,203)(161,197)(162,198)(163,200)(164,199)(165,193)(166,194)
(167,196)(168,195)(169,213)(170,214)(171,216)(172,215)(173,209)(174,210)
(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(219,220)(221,225)
(222,226)(223,228)(224,227)(231,232)(233,237)(234,238)(235,240)(236,239)
(243,244)(245,249)(246,250)(247,252)(248,251)(253,297)(254,298)(255,300)
(256,299)(257,293)(258,294)(259,296)(260,295)(261,289)(262,290)(263,292)
(264,291)(265,309)(266,310)(267,312)(268,311)(269,305)(270,306)(271,308)
(272,307)(273,301)(274,302)(275,304)(276,303)(277,321)(278,322)(279,324)
(280,323)(281,317)(282,318)(283,320)(284,319)(285,313)(286,314)(287,316)
(288,315)(327,328)(329,333)(330,334)(331,336)(332,335)(339,340)(341,345)
(342,346)(343,348)(344,347)(351,352)(353,357)(354,358)(355,360)(356,359)
(361,405)(362,406)(363,408)(364,407)(365,401)(366,402)(367,404)(368,403)
(369,397)(370,398)(371,400)(372,399)(373,417)(374,418)(375,420)(376,419)
(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)(383,412)(384,411)
(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)(392,427)
(393,421)(394,422)(395,424)(396,423);;
s2 := (  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)(  8, 46)
(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 61)( 14, 64)( 15, 63)( 16, 62)
( 17, 69)( 18, 72)( 19, 71)( 20, 70)( 21, 65)( 22, 68)( 23, 67)( 24, 66)
( 25, 49)( 26, 52)( 27, 51)( 28, 50)( 29, 57)( 30, 60)( 31, 59)( 32, 58)
( 33, 53)( 34, 56)( 35, 55)( 36, 54)( 73, 81)( 74, 84)( 75, 83)( 76, 82)
( 78, 80)( 85,105)( 86,108)( 87,107)( 88,106)( 89,101)( 90,104)( 91,103)
( 92,102)( 93, 97)( 94,100)( 95, 99)( 96, 98)(109,145)(110,148)(111,147)
(112,146)(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)
(120,150)(121,169)(122,172)(123,171)(124,170)(125,177)(126,180)(127,179)
(128,178)(129,173)(130,176)(131,175)(132,174)(133,157)(134,160)(135,159)
(136,158)(137,165)(138,168)(139,167)(140,166)(141,161)(142,164)(143,163)
(144,162)(181,189)(182,192)(183,191)(184,190)(186,188)(193,213)(194,216)
(195,215)(196,214)(197,209)(198,212)(199,211)(200,210)(201,205)(202,208)
(203,207)(204,206)(217,361)(218,364)(219,363)(220,362)(221,369)(222,372)
(223,371)(224,370)(225,365)(226,368)(227,367)(228,366)(229,385)(230,388)
(231,387)(232,386)(233,393)(234,396)(235,395)(236,394)(237,389)(238,392)
(239,391)(240,390)(241,373)(242,376)(243,375)(244,374)(245,381)(246,384)
(247,383)(248,382)(249,377)(250,380)(251,379)(252,378)(253,325)(254,328)
(255,327)(256,326)(257,333)(258,336)(259,335)(260,334)(261,329)(262,332)
(263,331)(264,330)(265,349)(266,352)(267,351)(268,350)(269,357)(270,360)
(271,359)(272,358)(273,353)(274,356)(275,355)(276,354)(277,337)(278,340)
(279,339)(280,338)(281,345)(282,348)(283,347)(284,346)(285,341)(286,344)
(287,343)(288,342)(289,405)(290,408)(291,407)(292,406)(293,401)(294,404)
(295,403)(296,402)(297,397)(298,400)(299,399)(300,398)(301,429)(302,432)
(303,431)(304,430)(305,425)(306,428)(307,427)(308,426)(309,421)(310,424)
(311,423)(312,422)(313,417)(314,420)(315,419)(316,418)(317,413)(318,416)
(319,415)(320,414)(321,409)(322,412)(323,411)(324,410);;
s3 := (  1,229)(  2,230)(  3,231)(  4,232)(  5,233)(  6,234)(  7,235)(  8,236)
(  9,237)( 10,238)( 11,239)( 12,240)( 13,217)( 14,218)( 15,219)( 16,220)
( 17,221)( 18,222)( 19,223)( 20,224)( 21,225)( 22,226)( 23,227)( 24,228)
( 25,241)( 26,242)( 27,243)( 28,244)( 29,245)( 30,246)( 31,247)( 32,248)
( 33,249)( 34,250)( 35,251)( 36,252)( 37,265)( 38,266)( 39,267)( 40,268)
( 41,269)( 42,270)( 43,271)( 44,272)( 45,273)( 46,274)( 47,275)( 48,276)
( 49,253)( 50,254)( 51,255)( 52,256)( 53,257)( 54,258)( 55,259)( 56,260)
( 57,261)( 58,262)( 59,263)( 60,264)( 61,277)( 62,278)( 63,279)( 64,280)
( 65,281)( 66,282)( 67,283)( 68,284)( 69,285)( 70,286)( 71,287)( 72,288)
( 73,301)( 74,302)( 75,303)( 76,304)( 77,305)( 78,306)( 79,307)( 80,308)
( 81,309)( 82,310)( 83,311)( 84,312)( 85,289)( 86,290)( 87,291)( 88,292)
( 89,293)( 90,294)( 91,295)( 92,296)( 93,297)( 94,298)( 95,299)( 96,300)
( 97,313)( 98,314)( 99,315)(100,316)(101,317)(102,318)(103,319)(104,320)
(105,321)(106,322)(107,323)(108,324)(109,337)(110,338)(111,339)(112,340)
(113,341)(114,342)(115,343)(116,344)(117,345)(118,346)(119,347)(120,348)
(121,325)(122,326)(123,327)(124,328)(125,329)(126,330)(127,331)(128,332)
(129,333)(130,334)(131,335)(132,336)(133,349)(134,350)(135,351)(136,352)
(137,353)(138,354)(139,355)(140,356)(141,357)(142,358)(143,359)(144,360)
(145,373)(146,374)(147,375)(148,376)(149,377)(150,378)(151,379)(152,380)
(153,381)(154,382)(155,383)(156,384)(157,361)(158,362)(159,363)(160,364)
(161,365)(162,366)(163,367)(164,368)(165,369)(166,370)(167,371)(168,372)
(169,385)(170,386)(171,387)(172,388)(173,389)(174,390)(175,391)(176,392)
(177,393)(178,394)(179,395)(180,396)(181,409)(182,410)(183,411)(184,412)
(185,413)(186,414)(187,415)(188,416)(189,417)(190,418)(191,419)(192,420)
(193,397)(194,398)(195,399)(196,400)(197,401)(198,402)(199,403)(200,404)
(201,405)(202,406)(203,407)(204,408)(205,421)(206,422)(207,423)(208,424)
(209,425)(210,426)(211,427)(212,428)(213,429)(214,430)(215,431)(216,432);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(432)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320)(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)
(334,336)(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)
(350,352)(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)
(366,368)(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)
(382,384)(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)
(398,400)(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)
(414,416)(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)
(430,432);
s1 := Sym(432)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 37, 81)( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)( 44, 79)
( 45, 73)( 46, 74)( 47, 76)( 48, 75)( 49, 93)( 50, 94)( 51, 96)( 52, 95)
( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)
( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)
( 69, 97)( 70, 98)( 71,100)( 72, 99)(111,112)(113,117)(114,118)(115,120)
(116,119)(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)
(138,142)(139,144)(140,143)(145,189)(146,190)(147,192)(148,191)(149,185)
(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)(157,201)
(158,202)(159,204)(160,203)(161,197)(162,198)(163,200)(164,199)(165,193)
(166,194)(167,196)(168,195)(169,213)(170,214)(171,216)(172,215)(173,209)
(174,210)(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(219,220)
(221,225)(222,226)(223,228)(224,227)(231,232)(233,237)(234,238)(235,240)
(236,239)(243,244)(245,249)(246,250)(247,252)(248,251)(253,297)(254,298)
(255,300)(256,299)(257,293)(258,294)(259,296)(260,295)(261,289)(262,290)
(263,292)(264,291)(265,309)(266,310)(267,312)(268,311)(269,305)(270,306)
(271,308)(272,307)(273,301)(274,302)(275,304)(276,303)(277,321)(278,322)
(279,324)(280,323)(281,317)(282,318)(283,320)(284,319)(285,313)(286,314)
(287,316)(288,315)(327,328)(329,333)(330,334)(331,336)(332,335)(339,340)
(341,345)(342,346)(343,348)(344,347)(351,352)(353,357)(354,358)(355,360)
(356,359)(361,405)(362,406)(363,408)(364,407)(365,401)(366,402)(367,404)
(368,403)(369,397)(370,398)(371,400)(372,399)(373,417)(374,418)(375,420)
(376,419)(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)(383,412)
(384,411)(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)
(392,427)(393,421)(394,422)(395,424)(396,423);
s2 := Sym(432)!(  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)
(  8, 46)(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 61)( 14, 64)( 15, 63)
( 16, 62)( 17, 69)( 18, 72)( 19, 71)( 20, 70)( 21, 65)( 22, 68)( 23, 67)
( 24, 66)( 25, 49)( 26, 52)( 27, 51)( 28, 50)( 29, 57)( 30, 60)( 31, 59)
( 32, 58)( 33, 53)( 34, 56)( 35, 55)( 36, 54)( 73, 81)( 74, 84)( 75, 83)
( 76, 82)( 78, 80)( 85,105)( 86,108)( 87,107)( 88,106)( 89,101)( 90,104)
( 91,103)( 92,102)( 93, 97)( 94,100)( 95, 99)( 96, 98)(109,145)(110,148)
(111,147)(112,146)(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)
(119,151)(120,150)(121,169)(122,172)(123,171)(124,170)(125,177)(126,180)
(127,179)(128,178)(129,173)(130,176)(131,175)(132,174)(133,157)(134,160)
(135,159)(136,158)(137,165)(138,168)(139,167)(140,166)(141,161)(142,164)
(143,163)(144,162)(181,189)(182,192)(183,191)(184,190)(186,188)(193,213)
(194,216)(195,215)(196,214)(197,209)(198,212)(199,211)(200,210)(201,205)
(202,208)(203,207)(204,206)(217,361)(218,364)(219,363)(220,362)(221,369)
(222,372)(223,371)(224,370)(225,365)(226,368)(227,367)(228,366)(229,385)
(230,388)(231,387)(232,386)(233,393)(234,396)(235,395)(236,394)(237,389)
(238,392)(239,391)(240,390)(241,373)(242,376)(243,375)(244,374)(245,381)
(246,384)(247,383)(248,382)(249,377)(250,380)(251,379)(252,378)(253,325)
(254,328)(255,327)(256,326)(257,333)(258,336)(259,335)(260,334)(261,329)
(262,332)(263,331)(264,330)(265,349)(266,352)(267,351)(268,350)(269,357)
(270,360)(271,359)(272,358)(273,353)(274,356)(275,355)(276,354)(277,337)
(278,340)(279,339)(280,338)(281,345)(282,348)(283,347)(284,346)(285,341)
(286,344)(287,343)(288,342)(289,405)(290,408)(291,407)(292,406)(293,401)
(294,404)(295,403)(296,402)(297,397)(298,400)(299,399)(300,398)(301,429)
(302,432)(303,431)(304,430)(305,425)(306,428)(307,427)(308,426)(309,421)
(310,424)(311,423)(312,422)(313,417)(314,420)(315,419)(316,418)(317,413)
(318,416)(319,415)(320,414)(321,409)(322,412)(323,411)(324,410);
s3 := Sym(432)!(  1,229)(  2,230)(  3,231)(  4,232)(  5,233)(  6,234)(  7,235)
(  8,236)(  9,237)( 10,238)( 11,239)( 12,240)( 13,217)( 14,218)( 15,219)
( 16,220)( 17,221)( 18,222)( 19,223)( 20,224)( 21,225)( 22,226)( 23,227)
( 24,228)( 25,241)( 26,242)( 27,243)( 28,244)( 29,245)( 30,246)( 31,247)
( 32,248)( 33,249)( 34,250)( 35,251)( 36,252)( 37,265)( 38,266)( 39,267)
( 40,268)( 41,269)( 42,270)( 43,271)( 44,272)( 45,273)( 46,274)( 47,275)
( 48,276)( 49,253)( 50,254)( 51,255)( 52,256)( 53,257)( 54,258)( 55,259)
( 56,260)( 57,261)( 58,262)( 59,263)( 60,264)( 61,277)( 62,278)( 63,279)
( 64,280)( 65,281)( 66,282)( 67,283)( 68,284)( 69,285)( 70,286)( 71,287)
( 72,288)( 73,301)( 74,302)( 75,303)( 76,304)( 77,305)( 78,306)( 79,307)
( 80,308)( 81,309)( 82,310)( 83,311)( 84,312)( 85,289)( 86,290)( 87,291)
( 88,292)( 89,293)( 90,294)( 91,295)( 92,296)( 93,297)( 94,298)( 95,299)
( 96,300)( 97,313)( 98,314)( 99,315)(100,316)(101,317)(102,318)(103,319)
(104,320)(105,321)(106,322)(107,323)(108,324)(109,337)(110,338)(111,339)
(112,340)(113,341)(114,342)(115,343)(116,344)(117,345)(118,346)(119,347)
(120,348)(121,325)(122,326)(123,327)(124,328)(125,329)(126,330)(127,331)
(128,332)(129,333)(130,334)(131,335)(132,336)(133,349)(134,350)(135,351)
(136,352)(137,353)(138,354)(139,355)(140,356)(141,357)(142,358)(143,359)
(144,360)(145,373)(146,374)(147,375)(148,376)(149,377)(150,378)(151,379)
(152,380)(153,381)(154,382)(155,383)(156,384)(157,361)(158,362)(159,363)
(160,364)(161,365)(162,366)(163,367)(164,368)(165,369)(166,370)(167,371)
(168,372)(169,385)(170,386)(171,387)(172,388)(173,389)(174,390)(175,391)
(176,392)(177,393)(178,394)(179,395)(180,396)(181,409)(182,410)(183,411)
(184,412)(185,413)(186,414)(187,415)(188,416)(189,417)(190,418)(191,419)
(192,420)(193,397)(194,398)(195,399)(196,400)(197,401)(198,402)(199,403)
(200,404)(201,405)(202,406)(203,407)(204,408)(205,421)(206,422)(207,423)
(208,424)(209,425)(210,426)(211,427)(212,428)(213,429)(214,430)(215,431)
(216,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope