Questions?
See the FAQ
or other info.

Polytope of Type {3,12,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,12,12}*1728a
if this polytope has a name.
Group : SmallGroup(1728,30243)
Rank : 4
Schlafli Type : {3,12,12}
Number of vertices, edges, etc : 6, 36, 144, 12
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 6
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,12,6}*864a
   3-fold quotients : {3,4,12}*576
   4-fold quotients : {3,6,12}*432a
   6-fold quotients : {3,4,6}*288
   8-fold quotients : {3,6,6}*216a
   9-fold quotients : {3,4,4}*192b
   12-fold quotients : {3,2,12}*144
   16-fold quotients : {3,6,3}*108
   18-fold quotients : {3,4,2}*96
   24-fold quotients : {3,2,6}*72
   36-fold quotients : {3,2,4}*48, {3,4,2}*48
   48-fold quotients : {3,2,3}*36
   72-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 37, 73)
( 38, 74)( 39, 76)( 40, 75)( 41, 81)( 42, 82)( 43, 84)( 44, 83)( 45, 77)
( 46, 78)( 47, 80)( 48, 79)( 49, 85)( 50, 86)( 51, 88)( 52, 87)( 53, 93)
( 54, 94)( 55, 96)( 56, 95)( 57, 89)( 58, 90)( 59, 92)( 60, 91)( 61, 97)
( 62, 98)( 63,100)( 64, 99)( 65,105)( 66,106)( 67,108)( 68,107)( 69,101)
( 70,102)( 71,104)( 72,103)(111,112)(113,117)(114,118)(115,120)(116,119)
(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)(138,142)
(139,144)(140,143)(145,181)(146,182)(147,184)(148,183)(149,189)(150,190)
(151,192)(152,191)(153,185)(154,186)(155,188)(156,187)(157,193)(158,194)
(159,196)(160,195)(161,201)(162,202)(163,204)(164,203)(165,197)(166,198)
(167,200)(168,199)(169,205)(170,206)(171,208)(172,207)(173,213)(174,214)
(175,216)(176,215)(177,209)(178,210)(179,212)(180,211)(219,220)(221,225)
(222,226)(223,228)(224,227)(231,232)(233,237)(234,238)(235,240)(236,239)
(243,244)(245,249)(246,250)(247,252)(248,251)(253,289)(254,290)(255,292)
(256,291)(257,297)(258,298)(259,300)(260,299)(261,293)(262,294)(263,296)
(264,295)(265,301)(266,302)(267,304)(268,303)(269,309)(270,310)(271,312)
(272,311)(273,305)(274,306)(275,308)(276,307)(277,313)(278,314)(279,316)
(280,315)(281,321)(282,322)(283,324)(284,323)(285,317)(286,318)(287,320)
(288,319)(327,328)(329,333)(330,334)(331,336)(332,335)(339,340)(341,345)
(342,346)(343,348)(344,347)(351,352)(353,357)(354,358)(355,360)(356,359)
(361,397)(362,398)(363,400)(364,399)(365,405)(366,406)(367,408)(368,407)
(369,401)(370,402)(371,404)(372,403)(373,409)(374,410)(375,412)(376,411)
(377,417)(378,418)(379,420)(380,419)(381,413)(382,414)(383,416)(384,415)
(385,421)(386,422)(387,424)(388,423)(389,429)(390,430)(391,432)(392,431)
(393,425)(394,426)(395,428)(396,427);;
s1 := (  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)(  8, 46)
(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 53)( 14, 56)( 15, 55)( 16, 54)
( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 57)( 22, 60)( 23, 59)( 24, 58)
( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 74, 76)( 77, 81)( 78, 84)( 79, 83)
( 80, 82)( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 94, 96)( 97,105)( 98,108)
( 99,107)(100,106)(102,104)(109,145)(110,148)(111,147)(112,146)(113,153)
(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)(120,150)(121,161)
(122,164)(123,163)(124,162)(125,157)(126,160)(127,159)(128,158)(129,165)
(130,168)(131,167)(132,166)(133,177)(134,180)(135,179)(136,178)(137,173)
(138,176)(139,175)(140,174)(141,169)(142,172)(143,171)(144,170)(182,184)
(185,189)(186,192)(187,191)(188,190)(193,197)(194,200)(195,199)(196,198)
(202,204)(205,213)(206,216)(207,215)(208,214)(210,212)(217,253)(218,256)
(219,255)(220,254)(221,261)(222,264)(223,263)(224,262)(225,257)(226,260)
(227,259)(228,258)(229,269)(230,272)(231,271)(232,270)(233,265)(234,268)
(235,267)(236,266)(237,273)(238,276)(239,275)(240,274)(241,285)(242,288)
(243,287)(244,286)(245,281)(246,284)(247,283)(248,282)(249,277)(250,280)
(251,279)(252,278)(290,292)(293,297)(294,300)(295,299)(296,298)(301,305)
(302,308)(303,307)(304,306)(310,312)(313,321)(314,324)(315,323)(316,322)
(318,320)(325,361)(326,364)(327,363)(328,362)(329,369)(330,372)(331,371)
(332,370)(333,365)(334,368)(335,367)(336,366)(337,377)(338,380)(339,379)
(340,378)(341,373)(342,376)(343,375)(344,374)(345,381)(346,384)(347,383)
(348,382)(349,393)(350,396)(351,395)(352,394)(353,389)(354,392)(355,391)
(356,390)(357,385)(358,388)(359,387)(360,386)(398,400)(401,405)(402,408)
(403,407)(404,406)(409,413)(410,416)(411,415)(412,414)(418,420)(421,429)
(422,432)(423,431)(424,430)(426,428);;
s2 := (  1, 14)(  2, 13)(  3, 16)(  4, 15)(  5, 22)(  6, 21)(  7, 24)(  8, 23)
(  9, 18)( 10, 17)( 11, 20)( 12, 19)( 25, 26)( 27, 28)( 29, 34)( 30, 33)
( 31, 36)( 32, 35)( 37, 50)( 38, 49)( 39, 52)( 40, 51)( 41, 58)( 42, 57)
( 43, 60)( 44, 59)( 45, 54)( 46, 53)( 47, 56)( 48, 55)( 61, 62)( 63, 64)
( 65, 70)( 66, 69)( 67, 72)( 68, 71)( 73, 86)( 74, 85)( 75, 88)( 76, 87)
( 77, 94)( 78, 93)( 79, 96)( 80, 95)( 81, 90)( 82, 89)( 83, 92)( 84, 91)
( 97, 98)( 99,100)(101,106)(102,105)(103,108)(104,107)(109,122)(110,121)
(111,124)(112,123)(113,130)(114,129)(115,132)(116,131)(117,126)(118,125)
(119,128)(120,127)(133,134)(135,136)(137,142)(138,141)(139,144)(140,143)
(145,158)(146,157)(147,160)(148,159)(149,166)(150,165)(151,168)(152,167)
(153,162)(154,161)(155,164)(156,163)(169,170)(171,172)(173,178)(174,177)
(175,180)(176,179)(181,194)(182,193)(183,196)(184,195)(185,202)(186,201)
(187,204)(188,203)(189,198)(190,197)(191,200)(192,199)(205,206)(207,208)
(209,214)(210,213)(211,216)(212,215)(217,338)(218,337)(219,340)(220,339)
(221,346)(222,345)(223,348)(224,347)(225,342)(226,341)(227,344)(228,343)
(229,326)(230,325)(231,328)(232,327)(233,334)(234,333)(235,336)(236,335)
(237,330)(238,329)(239,332)(240,331)(241,350)(242,349)(243,352)(244,351)
(245,358)(246,357)(247,360)(248,359)(249,354)(250,353)(251,356)(252,355)
(253,374)(254,373)(255,376)(256,375)(257,382)(258,381)(259,384)(260,383)
(261,378)(262,377)(263,380)(264,379)(265,362)(266,361)(267,364)(268,363)
(269,370)(270,369)(271,372)(272,371)(273,366)(274,365)(275,368)(276,367)
(277,386)(278,385)(279,388)(280,387)(281,394)(282,393)(283,396)(284,395)
(285,390)(286,389)(287,392)(288,391)(289,410)(290,409)(291,412)(292,411)
(293,418)(294,417)(295,420)(296,419)(297,414)(298,413)(299,416)(300,415)
(301,398)(302,397)(303,400)(304,399)(305,406)(306,405)(307,408)(308,407)
(309,402)(310,401)(311,404)(312,403)(313,422)(314,421)(315,424)(316,423)
(317,430)(318,429)(319,432)(320,431)(321,426)(322,425)(323,428)(324,427);;
s3 := (  1,217)(  2,218)(  3,219)(  4,220)(  5,225)(  6,226)(  7,227)(  8,228)
(  9,221)( 10,222)( 11,223)( 12,224)( 13,241)( 14,242)( 15,243)( 16,244)
( 17,249)( 18,250)( 19,251)( 20,252)( 21,245)( 22,246)( 23,247)( 24,248)
( 25,229)( 26,230)( 27,231)( 28,232)( 29,237)( 30,238)( 31,239)( 32,240)
( 33,233)( 34,234)( 35,235)( 36,236)( 37,253)( 38,254)( 39,255)( 40,256)
( 41,261)( 42,262)( 43,263)( 44,264)( 45,257)( 46,258)( 47,259)( 48,260)
( 49,277)( 50,278)( 51,279)( 52,280)( 53,285)( 54,286)( 55,287)( 56,288)
( 57,281)( 58,282)( 59,283)( 60,284)( 61,265)( 62,266)( 63,267)( 64,268)
( 65,273)( 66,274)( 67,275)( 68,276)( 69,269)( 70,270)( 71,271)( 72,272)
( 73,289)( 74,290)( 75,291)( 76,292)( 77,297)( 78,298)( 79,299)( 80,300)
( 81,293)( 82,294)( 83,295)( 84,296)( 85,313)( 86,314)( 87,315)( 88,316)
( 89,321)( 90,322)( 91,323)( 92,324)( 93,317)( 94,318)( 95,319)( 96,320)
( 97,301)( 98,302)( 99,303)(100,304)(101,309)(102,310)(103,311)(104,312)
(105,305)(106,306)(107,307)(108,308)(109,325)(110,326)(111,327)(112,328)
(113,333)(114,334)(115,335)(116,336)(117,329)(118,330)(119,331)(120,332)
(121,349)(122,350)(123,351)(124,352)(125,357)(126,358)(127,359)(128,360)
(129,353)(130,354)(131,355)(132,356)(133,337)(134,338)(135,339)(136,340)
(137,345)(138,346)(139,347)(140,348)(141,341)(142,342)(143,343)(144,344)
(145,361)(146,362)(147,363)(148,364)(149,369)(150,370)(151,371)(152,372)
(153,365)(154,366)(155,367)(156,368)(157,385)(158,386)(159,387)(160,388)
(161,393)(162,394)(163,395)(164,396)(165,389)(166,390)(167,391)(168,392)
(169,373)(170,374)(171,375)(172,376)(173,381)(174,382)(175,383)(176,384)
(177,377)(178,378)(179,379)(180,380)(181,397)(182,398)(183,399)(184,400)
(185,405)(186,406)(187,407)(188,408)(189,401)(190,402)(191,403)(192,404)
(193,421)(194,422)(195,423)(196,424)(197,429)(198,430)(199,431)(200,432)
(201,425)(202,426)(203,427)(204,428)(205,409)(206,410)(207,411)(208,412)
(209,417)(210,418)(211,419)(212,420)(213,413)(214,414)(215,415)(216,416);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 81)( 42, 82)( 43, 84)( 44, 83)
( 45, 77)( 46, 78)( 47, 80)( 48, 79)( 49, 85)( 50, 86)( 51, 88)( 52, 87)
( 53, 93)( 54, 94)( 55, 96)( 56, 95)( 57, 89)( 58, 90)( 59, 92)( 60, 91)
( 61, 97)( 62, 98)( 63,100)( 64, 99)( 65,105)( 66,106)( 67,108)( 68,107)
( 69,101)( 70,102)( 71,104)( 72,103)(111,112)(113,117)(114,118)(115,120)
(116,119)(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)
(138,142)(139,144)(140,143)(145,181)(146,182)(147,184)(148,183)(149,189)
(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)(156,187)(157,193)
(158,194)(159,196)(160,195)(161,201)(162,202)(163,204)(164,203)(165,197)
(166,198)(167,200)(168,199)(169,205)(170,206)(171,208)(172,207)(173,213)
(174,214)(175,216)(176,215)(177,209)(178,210)(179,212)(180,211)(219,220)
(221,225)(222,226)(223,228)(224,227)(231,232)(233,237)(234,238)(235,240)
(236,239)(243,244)(245,249)(246,250)(247,252)(248,251)(253,289)(254,290)
(255,292)(256,291)(257,297)(258,298)(259,300)(260,299)(261,293)(262,294)
(263,296)(264,295)(265,301)(266,302)(267,304)(268,303)(269,309)(270,310)
(271,312)(272,311)(273,305)(274,306)(275,308)(276,307)(277,313)(278,314)
(279,316)(280,315)(281,321)(282,322)(283,324)(284,323)(285,317)(286,318)
(287,320)(288,319)(327,328)(329,333)(330,334)(331,336)(332,335)(339,340)
(341,345)(342,346)(343,348)(344,347)(351,352)(353,357)(354,358)(355,360)
(356,359)(361,397)(362,398)(363,400)(364,399)(365,405)(366,406)(367,408)
(368,407)(369,401)(370,402)(371,404)(372,403)(373,409)(374,410)(375,412)
(376,411)(377,417)(378,418)(379,420)(380,419)(381,413)(382,414)(383,416)
(384,415)(385,421)(386,422)(387,424)(388,423)(389,429)(390,430)(391,432)
(392,431)(393,425)(394,426)(395,428)(396,427);
s1 := Sym(432)!(  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)
(  8, 46)(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 53)( 14, 56)( 15, 55)
( 16, 54)( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 57)( 22, 60)( 23, 59)
( 24, 58)( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 74, 76)( 77, 81)( 78, 84)
( 79, 83)( 80, 82)( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 94, 96)( 97,105)
( 98,108)( 99,107)(100,106)(102,104)(109,145)(110,148)(111,147)(112,146)
(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)(120,150)
(121,161)(122,164)(123,163)(124,162)(125,157)(126,160)(127,159)(128,158)
(129,165)(130,168)(131,167)(132,166)(133,177)(134,180)(135,179)(136,178)
(137,173)(138,176)(139,175)(140,174)(141,169)(142,172)(143,171)(144,170)
(182,184)(185,189)(186,192)(187,191)(188,190)(193,197)(194,200)(195,199)
(196,198)(202,204)(205,213)(206,216)(207,215)(208,214)(210,212)(217,253)
(218,256)(219,255)(220,254)(221,261)(222,264)(223,263)(224,262)(225,257)
(226,260)(227,259)(228,258)(229,269)(230,272)(231,271)(232,270)(233,265)
(234,268)(235,267)(236,266)(237,273)(238,276)(239,275)(240,274)(241,285)
(242,288)(243,287)(244,286)(245,281)(246,284)(247,283)(248,282)(249,277)
(250,280)(251,279)(252,278)(290,292)(293,297)(294,300)(295,299)(296,298)
(301,305)(302,308)(303,307)(304,306)(310,312)(313,321)(314,324)(315,323)
(316,322)(318,320)(325,361)(326,364)(327,363)(328,362)(329,369)(330,372)
(331,371)(332,370)(333,365)(334,368)(335,367)(336,366)(337,377)(338,380)
(339,379)(340,378)(341,373)(342,376)(343,375)(344,374)(345,381)(346,384)
(347,383)(348,382)(349,393)(350,396)(351,395)(352,394)(353,389)(354,392)
(355,391)(356,390)(357,385)(358,388)(359,387)(360,386)(398,400)(401,405)
(402,408)(403,407)(404,406)(409,413)(410,416)(411,415)(412,414)(418,420)
(421,429)(422,432)(423,431)(424,430)(426,428);
s2 := Sym(432)!(  1, 14)(  2, 13)(  3, 16)(  4, 15)(  5, 22)(  6, 21)(  7, 24)
(  8, 23)(  9, 18)( 10, 17)( 11, 20)( 12, 19)( 25, 26)( 27, 28)( 29, 34)
( 30, 33)( 31, 36)( 32, 35)( 37, 50)( 38, 49)( 39, 52)( 40, 51)( 41, 58)
( 42, 57)( 43, 60)( 44, 59)( 45, 54)( 46, 53)( 47, 56)( 48, 55)( 61, 62)
( 63, 64)( 65, 70)( 66, 69)( 67, 72)( 68, 71)( 73, 86)( 74, 85)( 75, 88)
( 76, 87)( 77, 94)( 78, 93)( 79, 96)( 80, 95)( 81, 90)( 82, 89)( 83, 92)
( 84, 91)( 97, 98)( 99,100)(101,106)(102,105)(103,108)(104,107)(109,122)
(110,121)(111,124)(112,123)(113,130)(114,129)(115,132)(116,131)(117,126)
(118,125)(119,128)(120,127)(133,134)(135,136)(137,142)(138,141)(139,144)
(140,143)(145,158)(146,157)(147,160)(148,159)(149,166)(150,165)(151,168)
(152,167)(153,162)(154,161)(155,164)(156,163)(169,170)(171,172)(173,178)
(174,177)(175,180)(176,179)(181,194)(182,193)(183,196)(184,195)(185,202)
(186,201)(187,204)(188,203)(189,198)(190,197)(191,200)(192,199)(205,206)
(207,208)(209,214)(210,213)(211,216)(212,215)(217,338)(218,337)(219,340)
(220,339)(221,346)(222,345)(223,348)(224,347)(225,342)(226,341)(227,344)
(228,343)(229,326)(230,325)(231,328)(232,327)(233,334)(234,333)(235,336)
(236,335)(237,330)(238,329)(239,332)(240,331)(241,350)(242,349)(243,352)
(244,351)(245,358)(246,357)(247,360)(248,359)(249,354)(250,353)(251,356)
(252,355)(253,374)(254,373)(255,376)(256,375)(257,382)(258,381)(259,384)
(260,383)(261,378)(262,377)(263,380)(264,379)(265,362)(266,361)(267,364)
(268,363)(269,370)(270,369)(271,372)(272,371)(273,366)(274,365)(275,368)
(276,367)(277,386)(278,385)(279,388)(280,387)(281,394)(282,393)(283,396)
(284,395)(285,390)(286,389)(287,392)(288,391)(289,410)(290,409)(291,412)
(292,411)(293,418)(294,417)(295,420)(296,419)(297,414)(298,413)(299,416)
(300,415)(301,398)(302,397)(303,400)(304,399)(305,406)(306,405)(307,408)
(308,407)(309,402)(310,401)(311,404)(312,403)(313,422)(314,421)(315,424)
(316,423)(317,430)(318,429)(319,432)(320,431)(321,426)(322,425)(323,428)
(324,427);
s3 := Sym(432)!(  1,217)(  2,218)(  3,219)(  4,220)(  5,225)(  6,226)(  7,227)
(  8,228)(  9,221)( 10,222)( 11,223)( 12,224)( 13,241)( 14,242)( 15,243)
( 16,244)( 17,249)( 18,250)( 19,251)( 20,252)( 21,245)( 22,246)( 23,247)
( 24,248)( 25,229)( 26,230)( 27,231)( 28,232)( 29,237)( 30,238)( 31,239)
( 32,240)( 33,233)( 34,234)( 35,235)( 36,236)( 37,253)( 38,254)( 39,255)
( 40,256)( 41,261)( 42,262)( 43,263)( 44,264)( 45,257)( 46,258)( 47,259)
( 48,260)( 49,277)( 50,278)( 51,279)( 52,280)( 53,285)( 54,286)( 55,287)
( 56,288)( 57,281)( 58,282)( 59,283)( 60,284)( 61,265)( 62,266)( 63,267)
( 64,268)( 65,273)( 66,274)( 67,275)( 68,276)( 69,269)( 70,270)( 71,271)
( 72,272)( 73,289)( 74,290)( 75,291)( 76,292)( 77,297)( 78,298)( 79,299)
( 80,300)( 81,293)( 82,294)( 83,295)( 84,296)( 85,313)( 86,314)( 87,315)
( 88,316)( 89,321)( 90,322)( 91,323)( 92,324)( 93,317)( 94,318)( 95,319)
( 96,320)( 97,301)( 98,302)( 99,303)(100,304)(101,309)(102,310)(103,311)
(104,312)(105,305)(106,306)(107,307)(108,308)(109,325)(110,326)(111,327)
(112,328)(113,333)(114,334)(115,335)(116,336)(117,329)(118,330)(119,331)
(120,332)(121,349)(122,350)(123,351)(124,352)(125,357)(126,358)(127,359)
(128,360)(129,353)(130,354)(131,355)(132,356)(133,337)(134,338)(135,339)
(136,340)(137,345)(138,346)(139,347)(140,348)(141,341)(142,342)(143,343)
(144,344)(145,361)(146,362)(147,363)(148,364)(149,369)(150,370)(151,371)
(152,372)(153,365)(154,366)(155,367)(156,368)(157,385)(158,386)(159,387)
(160,388)(161,393)(162,394)(163,395)(164,396)(165,389)(166,390)(167,391)
(168,392)(169,373)(170,374)(171,375)(172,376)(173,381)(174,382)(175,383)
(176,384)(177,377)(178,378)(179,379)(180,380)(181,397)(182,398)(183,399)
(184,400)(185,405)(186,406)(187,407)(188,408)(189,401)(190,402)(191,403)
(192,404)(193,421)(194,422)(195,423)(196,424)(197,429)(198,430)(199,431)
(200,432)(201,425)(202,426)(203,427)(204,428)(205,409)(206,410)(207,411)
(208,412)(209,417)(210,418)(211,419)(212,420)(213,413)(214,414)(215,415)
(216,416);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope