Questions?
See the FAQ
or other info.

Polytope of Type {2,6,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,24}*1728d
if this polytope has a name.
Group : SmallGroup(1728,30374)
Rank : 4
Schlafli Type : {2,6,24}
Number of vertices, edges, etc : 2, 18, 216, 72
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,12}*864e
   3-fold quotients : {2,6,8}*576
   4-fold quotients : {2,6,12}*432a
   6-fold quotients : {2,6,4}*288
   12-fold quotients : {2,6,4}*144
   27-fold quotients : {2,2,8}*64
   54-fold quotients : {2,2,4}*32
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3,165)(  4,166)(  5,167)(  6,173)(  7,171)(  8,172)(  9,169)( 10,170)
( 11,168)( 12,183)( 13,184)( 14,185)( 15,191)( 16,189)( 17,190)( 18,187)
( 19,188)( 20,186)( 21,174)( 22,175)( 23,176)( 24,182)( 25,180)( 26,181)
( 27,178)( 28,179)( 29,177)( 30,192)( 31,193)( 32,194)( 33,200)( 34,198)
( 35,199)( 36,196)( 37,197)( 38,195)( 39,210)( 40,211)( 41,212)( 42,218)
( 43,216)( 44,217)( 45,214)( 46,215)( 47,213)( 48,201)( 49,202)( 50,203)
( 51,209)( 52,207)( 53,208)( 54,205)( 55,206)( 56,204)( 57,138)( 58,139)
( 59,140)( 60,146)( 61,144)( 62,145)( 63,142)( 64,143)( 65,141)( 66,156)
( 67,157)( 68,158)( 69,164)( 70,162)( 71,163)( 72,160)( 73,161)( 74,159)
( 75,147)( 76,148)( 77,149)( 78,155)( 79,153)( 80,154)( 81,151)( 82,152)
( 83,150)( 84,111)( 85,112)( 86,113)( 87,119)( 88,117)( 89,118)( 90,115)
( 91,116)( 92,114)( 93,129)( 94,130)( 95,131)( 96,137)( 97,135)( 98,136)
( 99,133)(100,134)(101,132)(102,120)(103,121)(104,122)(105,128)(106,126)
(107,127)(108,124)(109,125)(110,123)(219,381)(220,382)(221,383)(222,389)
(223,387)(224,388)(225,385)(226,386)(227,384)(228,399)(229,400)(230,401)
(231,407)(232,405)(233,406)(234,403)(235,404)(236,402)(237,390)(238,391)
(239,392)(240,398)(241,396)(242,397)(243,394)(244,395)(245,393)(246,408)
(247,409)(248,410)(249,416)(250,414)(251,415)(252,412)(253,413)(254,411)
(255,426)(256,427)(257,428)(258,434)(259,432)(260,433)(261,430)(262,431)
(263,429)(264,417)(265,418)(266,419)(267,425)(268,423)(269,424)(270,421)
(271,422)(272,420)(273,354)(274,355)(275,356)(276,362)(277,360)(278,361)
(279,358)(280,359)(281,357)(282,372)(283,373)(284,374)(285,380)(286,378)
(287,379)(288,376)(289,377)(290,375)(291,363)(292,364)(293,365)(294,371)
(295,369)(296,370)(297,367)(298,368)(299,366)(300,327)(301,328)(302,329)
(303,335)(304,333)(305,334)(306,331)(307,332)(308,330)(309,345)(310,346)
(311,347)(312,353)(313,351)(314,352)(315,349)(316,350)(317,348)(318,336)
(319,337)(320,338)(321,344)(322,342)(323,343)(324,340)(325,341)(326,339);;
s2 := (  3, 12)(  4, 14)(  5, 13)(  6, 17)(  7, 16)(  8, 15)(  9, 19)( 10, 18)
( 11, 20)( 22, 23)( 24, 26)( 27, 28)( 30, 39)( 31, 41)( 32, 40)( 33, 44)
( 34, 43)( 35, 42)( 36, 46)( 37, 45)( 38, 47)( 49, 50)( 51, 53)( 54, 55)
( 57, 93)( 58, 95)( 59, 94)( 60, 98)( 61, 97)( 62, 96)( 63,100)( 64, 99)
( 65,101)( 66, 84)( 67, 86)( 68, 85)( 69, 89)( 70, 88)( 71, 87)( 72, 91)
( 73, 90)( 74, 92)( 75,102)( 76,104)( 77,103)( 78,107)( 79,106)( 80,105)
( 81,109)( 82,108)( 83,110)(111,147)(112,149)(113,148)(114,152)(115,151)
(116,150)(117,154)(118,153)(119,155)(120,138)(121,140)(122,139)(123,143)
(124,142)(125,141)(126,145)(127,144)(128,146)(129,156)(130,158)(131,157)
(132,161)(133,160)(134,159)(135,163)(136,162)(137,164)(165,174)(166,176)
(167,175)(168,179)(169,178)(170,177)(171,181)(172,180)(173,182)(184,185)
(186,188)(189,190)(192,201)(193,203)(194,202)(195,206)(196,205)(197,204)
(198,208)(199,207)(200,209)(211,212)(213,215)(216,217)(219,282)(220,284)
(221,283)(222,287)(223,286)(224,285)(225,289)(226,288)(227,290)(228,273)
(229,275)(230,274)(231,278)(232,277)(233,276)(234,280)(235,279)(236,281)
(237,291)(238,293)(239,292)(240,296)(241,295)(242,294)(243,298)(244,297)
(245,299)(246,309)(247,311)(248,310)(249,314)(250,313)(251,312)(252,316)
(253,315)(254,317)(255,300)(256,302)(257,301)(258,305)(259,304)(260,303)
(261,307)(262,306)(263,308)(264,318)(265,320)(266,319)(267,323)(268,322)
(269,321)(270,325)(271,324)(272,326)(327,417)(328,419)(329,418)(330,422)
(331,421)(332,420)(333,424)(334,423)(335,425)(336,408)(337,410)(338,409)
(339,413)(340,412)(341,411)(342,415)(343,414)(344,416)(345,426)(346,428)
(347,427)(348,431)(349,430)(350,429)(351,433)(352,432)(353,434)(354,390)
(355,392)(356,391)(357,395)(358,394)(359,393)(360,397)(361,396)(362,398)
(363,381)(364,383)(365,382)(366,386)(367,385)(368,384)(369,388)(370,387)
(371,389)(372,399)(373,401)(374,400)(375,404)(376,403)(377,402)(378,406)
(379,405)(380,407);;
s3 := (  3,219)(  4,221)(  5,220)(  6,230)(  7,229)(  8,228)(  9,238)( 10,237)
( 11,239)( 12,224)( 13,223)( 14,222)( 15,233)( 16,232)( 17,231)( 18,242)
( 19,241)( 20,240)( 21,226)( 22,225)( 23,227)( 24,236)( 25,235)( 26,234)
( 27,243)( 28,245)( 29,244)( 30,246)( 31,248)( 32,247)( 33,257)( 34,256)
( 35,255)( 36,265)( 37,264)( 38,266)( 39,251)( 40,250)( 41,249)( 42,260)
( 43,259)( 44,258)( 45,269)( 46,268)( 47,267)( 48,253)( 49,252)( 50,254)
( 51,263)( 52,262)( 53,261)( 54,270)( 55,272)( 56,271)( 57,300)( 58,302)
( 59,301)( 60,311)( 61,310)( 62,309)( 63,319)( 64,318)( 65,320)( 66,305)
( 67,304)( 68,303)( 69,314)( 70,313)( 71,312)( 72,323)( 73,322)( 74,321)
( 75,307)( 76,306)( 77,308)( 78,317)( 79,316)( 80,315)( 81,324)( 82,326)
( 83,325)( 84,273)( 85,275)( 86,274)( 87,284)( 88,283)( 89,282)( 90,292)
( 91,291)( 92,293)( 93,278)( 94,277)( 95,276)( 96,287)( 97,286)( 98,285)
( 99,296)(100,295)(101,294)(102,280)(103,279)(104,281)(105,290)(106,289)
(107,288)(108,297)(109,299)(110,298)(111,354)(112,356)(113,355)(114,365)
(115,364)(116,363)(117,373)(118,372)(119,374)(120,359)(121,358)(122,357)
(123,368)(124,367)(125,366)(126,377)(127,376)(128,375)(129,361)(130,360)
(131,362)(132,371)(133,370)(134,369)(135,378)(136,380)(137,379)(138,327)
(139,329)(140,328)(141,338)(142,337)(143,336)(144,346)(145,345)(146,347)
(147,332)(148,331)(149,330)(150,341)(151,340)(152,339)(153,350)(154,349)
(155,348)(156,334)(157,333)(158,335)(159,344)(160,343)(161,342)(162,351)
(163,353)(164,352)(165,381)(166,383)(167,382)(168,392)(169,391)(170,390)
(171,400)(172,399)(173,401)(174,386)(175,385)(176,384)(177,395)(178,394)
(179,393)(180,404)(181,403)(182,402)(183,388)(184,387)(185,389)(186,398)
(187,397)(188,396)(189,405)(190,407)(191,406)(192,408)(193,410)(194,409)
(195,419)(196,418)(197,417)(198,427)(199,426)(200,428)(201,413)(202,412)
(203,411)(204,422)(205,421)(206,420)(207,431)(208,430)(209,429)(210,415)
(211,414)(212,416)(213,425)(214,424)(215,423)(216,432)(217,434)(218,433);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2, 
s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(434)!(1,2);
s1 := Sym(434)!(  3,165)(  4,166)(  5,167)(  6,173)(  7,171)(  8,172)(  9,169)
( 10,170)( 11,168)( 12,183)( 13,184)( 14,185)( 15,191)( 16,189)( 17,190)
( 18,187)( 19,188)( 20,186)( 21,174)( 22,175)( 23,176)( 24,182)( 25,180)
( 26,181)( 27,178)( 28,179)( 29,177)( 30,192)( 31,193)( 32,194)( 33,200)
( 34,198)( 35,199)( 36,196)( 37,197)( 38,195)( 39,210)( 40,211)( 41,212)
( 42,218)( 43,216)( 44,217)( 45,214)( 46,215)( 47,213)( 48,201)( 49,202)
( 50,203)( 51,209)( 52,207)( 53,208)( 54,205)( 55,206)( 56,204)( 57,138)
( 58,139)( 59,140)( 60,146)( 61,144)( 62,145)( 63,142)( 64,143)( 65,141)
( 66,156)( 67,157)( 68,158)( 69,164)( 70,162)( 71,163)( 72,160)( 73,161)
( 74,159)( 75,147)( 76,148)( 77,149)( 78,155)( 79,153)( 80,154)( 81,151)
( 82,152)( 83,150)( 84,111)( 85,112)( 86,113)( 87,119)( 88,117)( 89,118)
( 90,115)( 91,116)( 92,114)( 93,129)( 94,130)( 95,131)( 96,137)( 97,135)
( 98,136)( 99,133)(100,134)(101,132)(102,120)(103,121)(104,122)(105,128)
(106,126)(107,127)(108,124)(109,125)(110,123)(219,381)(220,382)(221,383)
(222,389)(223,387)(224,388)(225,385)(226,386)(227,384)(228,399)(229,400)
(230,401)(231,407)(232,405)(233,406)(234,403)(235,404)(236,402)(237,390)
(238,391)(239,392)(240,398)(241,396)(242,397)(243,394)(244,395)(245,393)
(246,408)(247,409)(248,410)(249,416)(250,414)(251,415)(252,412)(253,413)
(254,411)(255,426)(256,427)(257,428)(258,434)(259,432)(260,433)(261,430)
(262,431)(263,429)(264,417)(265,418)(266,419)(267,425)(268,423)(269,424)
(270,421)(271,422)(272,420)(273,354)(274,355)(275,356)(276,362)(277,360)
(278,361)(279,358)(280,359)(281,357)(282,372)(283,373)(284,374)(285,380)
(286,378)(287,379)(288,376)(289,377)(290,375)(291,363)(292,364)(293,365)
(294,371)(295,369)(296,370)(297,367)(298,368)(299,366)(300,327)(301,328)
(302,329)(303,335)(304,333)(305,334)(306,331)(307,332)(308,330)(309,345)
(310,346)(311,347)(312,353)(313,351)(314,352)(315,349)(316,350)(317,348)
(318,336)(319,337)(320,338)(321,344)(322,342)(323,343)(324,340)(325,341)
(326,339);
s2 := Sym(434)!(  3, 12)(  4, 14)(  5, 13)(  6, 17)(  7, 16)(  8, 15)(  9, 19)
( 10, 18)( 11, 20)( 22, 23)( 24, 26)( 27, 28)( 30, 39)( 31, 41)( 32, 40)
( 33, 44)( 34, 43)( 35, 42)( 36, 46)( 37, 45)( 38, 47)( 49, 50)( 51, 53)
( 54, 55)( 57, 93)( 58, 95)( 59, 94)( 60, 98)( 61, 97)( 62, 96)( 63,100)
( 64, 99)( 65,101)( 66, 84)( 67, 86)( 68, 85)( 69, 89)( 70, 88)( 71, 87)
( 72, 91)( 73, 90)( 74, 92)( 75,102)( 76,104)( 77,103)( 78,107)( 79,106)
( 80,105)( 81,109)( 82,108)( 83,110)(111,147)(112,149)(113,148)(114,152)
(115,151)(116,150)(117,154)(118,153)(119,155)(120,138)(121,140)(122,139)
(123,143)(124,142)(125,141)(126,145)(127,144)(128,146)(129,156)(130,158)
(131,157)(132,161)(133,160)(134,159)(135,163)(136,162)(137,164)(165,174)
(166,176)(167,175)(168,179)(169,178)(170,177)(171,181)(172,180)(173,182)
(184,185)(186,188)(189,190)(192,201)(193,203)(194,202)(195,206)(196,205)
(197,204)(198,208)(199,207)(200,209)(211,212)(213,215)(216,217)(219,282)
(220,284)(221,283)(222,287)(223,286)(224,285)(225,289)(226,288)(227,290)
(228,273)(229,275)(230,274)(231,278)(232,277)(233,276)(234,280)(235,279)
(236,281)(237,291)(238,293)(239,292)(240,296)(241,295)(242,294)(243,298)
(244,297)(245,299)(246,309)(247,311)(248,310)(249,314)(250,313)(251,312)
(252,316)(253,315)(254,317)(255,300)(256,302)(257,301)(258,305)(259,304)
(260,303)(261,307)(262,306)(263,308)(264,318)(265,320)(266,319)(267,323)
(268,322)(269,321)(270,325)(271,324)(272,326)(327,417)(328,419)(329,418)
(330,422)(331,421)(332,420)(333,424)(334,423)(335,425)(336,408)(337,410)
(338,409)(339,413)(340,412)(341,411)(342,415)(343,414)(344,416)(345,426)
(346,428)(347,427)(348,431)(349,430)(350,429)(351,433)(352,432)(353,434)
(354,390)(355,392)(356,391)(357,395)(358,394)(359,393)(360,397)(361,396)
(362,398)(363,381)(364,383)(365,382)(366,386)(367,385)(368,384)(369,388)
(370,387)(371,389)(372,399)(373,401)(374,400)(375,404)(376,403)(377,402)
(378,406)(379,405)(380,407);
s3 := Sym(434)!(  3,219)(  4,221)(  5,220)(  6,230)(  7,229)(  8,228)(  9,238)
( 10,237)( 11,239)( 12,224)( 13,223)( 14,222)( 15,233)( 16,232)( 17,231)
( 18,242)( 19,241)( 20,240)( 21,226)( 22,225)( 23,227)( 24,236)( 25,235)
( 26,234)( 27,243)( 28,245)( 29,244)( 30,246)( 31,248)( 32,247)( 33,257)
( 34,256)( 35,255)( 36,265)( 37,264)( 38,266)( 39,251)( 40,250)( 41,249)
( 42,260)( 43,259)( 44,258)( 45,269)( 46,268)( 47,267)( 48,253)( 49,252)
( 50,254)( 51,263)( 52,262)( 53,261)( 54,270)( 55,272)( 56,271)( 57,300)
( 58,302)( 59,301)( 60,311)( 61,310)( 62,309)( 63,319)( 64,318)( 65,320)
( 66,305)( 67,304)( 68,303)( 69,314)( 70,313)( 71,312)( 72,323)( 73,322)
( 74,321)( 75,307)( 76,306)( 77,308)( 78,317)( 79,316)( 80,315)( 81,324)
( 82,326)( 83,325)( 84,273)( 85,275)( 86,274)( 87,284)( 88,283)( 89,282)
( 90,292)( 91,291)( 92,293)( 93,278)( 94,277)( 95,276)( 96,287)( 97,286)
( 98,285)( 99,296)(100,295)(101,294)(102,280)(103,279)(104,281)(105,290)
(106,289)(107,288)(108,297)(109,299)(110,298)(111,354)(112,356)(113,355)
(114,365)(115,364)(116,363)(117,373)(118,372)(119,374)(120,359)(121,358)
(122,357)(123,368)(124,367)(125,366)(126,377)(127,376)(128,375)(129,361)
(130,360)(131,362)(132,371)(133,370)(134,369)(135,378)(136,380)(137,379)
(138,327)(139,329)(140,328)(141,338)(142,337)(143,336)(144,346)(145,345)
(146,347)(147,332)(148,331)(149,330)(150,341)(151,340)(152,339)(153,350)
(154,349)(155,348)(156,334)(157,333)(158,335)(159,344)(160,343)(161,342)
(162,351)(163,353)(164,352)(165,381)(166,383)(167,382)(168,392)(169,391)
(170,390)(171,400)(172,399)(173,401)(174,386)(175,385)(176,384)(177,395)
(178,394)(179,393)(180,404)(181,403)(182,402)(183,388)(184,387)(185,389)
(186,398)(187,397)(188,396)(189,405)(190,407)(191,406)(192,408)(193,410)
(194,409)(195,419)(196,418)(197,417)(198,427)(199,426)(200,428)(201,413)
(202,412)(203,411)(204,422)(205,421)(206,420)(207,431)(208,430)(209,429)
(210,415)(211,414)(212,416)(213,425)(214,424)(215,423)(216,432)(217,434)
(218,433);
poly := sub<Sym(434)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2, 
s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 >; 
 

to this polytope