Questions?
See the FAQ
or other info.

Polytope of Type {12,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,2}*1728e
if this polytope has a name.
Group : SmallGroup(1728,30413)
Rank : 4
Schlafli Type : {12,12,2}
Number of vertices, edges, etc : 36, 216, 36, 2
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,6,2}*864f
   3-fold quotients : {4,12,2}*576
   4-fold quotients : {12,6,2}*432a
   6-fold quotients : {4,6,2}*288
   12-fold quotients : {4,6,2}*144
   27-fold quotients : {4,4,2}*64
   54-fold quotients : {2,4,2}*32, {4,2,2}*32
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  5)(  7,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 23)( 14, 22)
( 15, 24)( 16, 27)( 17, 26)( 18, 25)( 29, 30)( 31, 32)( 34, 36)( 37, 46)
( 38, 48)( 39, 47)( 40, 50)( 41, 49)( 42, 51)( 43, 54)( 44, 53)( 45, 52)
( 56, 57)( 58, 59)( 61, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 77)( 68, 76)
( 69, 78)( 70, 81)( 71, 80)( 72, 79)( 83, 84)( 85, 86)( 88, 90)( 91,100)
( 92,102)( 93,101)( 94,104)( 95,103)( 96,105)( 97,108)( 98,107)( 99,106);;
s1 := (  1,  2)(  4, 19)(  5, 21)(  6, 20)(  7, 12)(  8, 11)(  9, 10)( 13, 27)
( 14, 26)( 15, 25)( 16, 18)( 22, 23)( 28, 29)( 31, 46)( 32, 48)( 33, 47)
( 34, 39)( 35, 38)( 36, 37)( 40, 54)( 41, 53)( 42, 52)( 43, 45)( 49, 50)
( 55, 83)( 56, 82)( 57, 84)( 58,100)( 59,102)( 60,101)( 61, 93)( 62, 92)
( 63, 91)( 64, 90)( 65, 89)( 66, 88)( 67,108)( 68,107)( 69,106)( 70, 99)
( 71, 98)( 72, 97)( 73, 85)( 74, 87)( 75, 86)( 76,104)( 77,103)( 78,105)
( 79, 96)( 80, 95)( 81, 94);;
s2 := (  1, 62)(  2, 63)(  3, 61)(  4, 58)(  5, 59)(  6, 60)(  7, 57)(  8, 55)
(  9, 56)( 10, 80)( 11, 81)( 12, 79)( 13, 76)( 14, 77)( 15, 78)( 16, 75)
( 17, 73)( 18, 74)( 19, 71)( 20, 72)( 21, 70)( 22, 67)( 23, 68)( 24, 69)
( 25, 66)( 26, 64)( 27, 65)( 28, 89)( 29, 90)( 30, 88)( 31, 85)( 32, 86)
( 33, 87)( 34, 84)( 35, 82)( 36, 83)( 37,107)( 38,108)( 39,106)( 40,103)
( 41,104)( 42,105)( 43,102)( 44,100)( 45,101)( 46, 98)( 47, 99)( 48, 97)
( 49, 94)( 50, 95)( 51, 96)( 52, 93)( 53, 91)( 54, 92);;
s3 := (109,110);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(110)!(  2,  3)(  4,  5)(  7,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 23)
( 14, 22)( 15, 24)( 16, 27)( 17, 26)( 18, 25)( 29, 30)( 31, 32)( 34, 36)
( 37, 46)( 38, 48)( 39, 47)( 40, 50)( 41, 49)( 42, 51)( 43, 54)( 44, 53)
( 45, 52)( 56, 57)( 58, 59)( 61, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 77)
( 68, 76)( 69, 78)( 70, 81)( 71, 80)( 72, 79)( 83, 84)( 85, 86)( 88, 90)
( 91,100)( 92,102)( 93,101)( 94,104)( 95,103)( 96,105)( 97,108)( 98,107)
( 99,106);
s1 := Sym(110)!(  1,  2)(  4, 19)(  5, 21)(  6, 20)(  7, 12)(  8, 11)(  9, 10)
( 13, 27)( 14, 26)( 15, 25)( 16, 18)( 22, 23)( 28, 29)( 31, 46)( 32, 48)
( 33, 47)( 34, 39)( 35, 38)( 36, 37)( 40, 54)( 41, 53)( 42, 52)( 43, 45)
( 49, 50)( 55, 83)( 56, 82)( 57, 84)( 58,100)( 59,102)( 60,101)( 61, 93)
( 62, 92)( 63, 91)( 64, 90)( 65, 89)( 66, 88)( 67,108)( 68,107)( 69,106)
( 70, 99)( 71, 98)( 72, 97)( 73, 85)( 74, 87)( 75, 86)( 76,104)( 77,103)
( 78,105)( 79, 96)( 80, 95)( 81, 94);
s2 := Sym(110)!(  1, 62)(  2, 63)(  3, 61)(  4, 58)(  5, 59)(  6, 60)(  7, 57)
(  8, 55)(  9, 56)( 10, 80)( 11, 81)( 12, 79)( 13, 76)( 14, 77)( 15, 78)
( 16, 75)( 17, 73)( 18, 74)( 19, 71)( 20, 72)( 21, 70)( 22, 67)( 23, 68)
( 24, 69)( 25, 66)( 26, 64)( 27, 65)( 28, 89)( 29, 90)( 30, 88)( 31, 85)
( 32, 86)( 33, 87)( 34, 84)( 35, 82)( 36, 83)( 37,107)( 38,108)( 39,106)
( 40,103)( 41,104)( 42,105)( 43,102)( 44,100)( 45,101)( 46, 98)( 47, 99)
( 48, 97)( 49, 94)( 50, 95)( 51, 96)( 52, 93)( 53, 91)( 54, 92);
s3 := Sym(110)!(109,110);
poly := sub<Sym(110)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 

to this polytope