Questions?
See the FAQ
or other info.

Polytope of Type {12,6,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6,2,2}*1728a
if this polytope has a name.
Group : SmallGroup(1728,30782)
Rank : 5
Schlafli Type : {12,6,2,2}
Number of vertices, edges, etc : 36, 108, 18, 2, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,2,2}*864c
   3-fold quotients : {12,6,2,2}*576b
   4-fold quotients : {3,6,2,2}*432
   6-fold quotients : {6,6,2,2}*288c
   9-fold quotients : {12,2,2,2}*192
   12-fold quotients : {3,6,2,2}*144
   18-fold quotients : {6,2,2,2}*96
   27-fold quotients : {4,2,2,2}*64
   36-fold quotients : {3,2,2,2}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  7)(  5,  8)(  6,  9)( 10, 19)( 11, 20)( 12, 21)( 13, 25)( 14, 26)
( 15, 27)( 16, 22)( 17, 23)( 18, 24)( 31, 34)( 32, 35)( 33, 36)( 37, 46)
( 38, 47)( 39, 48)( 40, 52)( 41, 53)( 42, 54)( 43, 49)( 44, 50)( 45, 51)
( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)( 60, 90)( 61, 85)( 62, 86)
( 63, 87)( 64,100)( 65,101)( 66,102)( 67,106)( 68,107)( 69,108)( 70,103)
( 71,104)( 72,105)( 73, 91)( 74, 92)( 75, 93)( 76, 97)( 77, 98)( 78, 99)
( 79, 94)( 80, 95)( 81, 96);;
s1 := (  1, 77)(  2, 78)(  3, 76)(  4, 75)(  5, 73)(  6, 74)(  7, 79)(  8, 80)
(  9, 81)( 10, 68)( 11, 69)( 12, 67)( 13, 66)( 14, 64)( 15, 65)( 16, 70)
( 17, 71)( 18, 72)( 19, 59)( 20, 60)( 21, 58)( 22, 57)( 23, 55)( 24, 56)
( 25, 61)( 26, 62)( 27, 63)( 28,104)( 29,105)( 30,103)( 31,102)( 32,100)
( 33,101)( 34,106)( 35,107)( 36,108)( 37, 95)( 38, 96)( 39, 94)( 40, 93)
( 41, 91)( 42, 92)( 43, 97)( 44, 98)( 45, 99)( 46, 86)( 47, 87)( 48, 85)
( 49, 84)( 50, 82)( 51, 83)( 52, 88)( 53, 89)( 54, 90);;
s2 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)( 51, 53)
( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)( 69, 71)
( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)( 87, 89)
( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)(105,107);;
s3 := (109,110);;
s4 := (111,112);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(112)!(  4,  7)(  5,  8)(  6,  9)( 10, 19)( 11, 20)( 12, 21)( 13, 25)
( 14, 26)( 15, 27)( 16, 22)( 17, 23)( 18, 24)( 31, 34)( 32, 35)( 33, 36)
( 37, 46)( 38, 47)( 39, 48)( 40, 52)( 41, 53)( 42, 54)( 43, 49)( 44, 50)
( 45, 51)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)( 60, 90)( 61, 85)
( 62, 86)( 63, 87)( 64,100)( 65,101)( 66,102)( 67,106)( 68,107)( 69,108)
( 70,103)( 71,104)( 72,105)( 73, 91)( 74, 92)( 75, 93)( 76, 97)( 77, 98)
( 78, 99)( 79, 94)( 80, 95)( 81, 96);
s1 := Sym(112)!(  1, 77)(  2, 78)(  3, 76)(  4, 75)(  5, 73)(  6, 74)(  7, 79)
(  8, 80)(  9, 81)( 10, 68)( 11, 69)( 12, 67)( 13, 66)( 14, 64)( 15, 65)
( 16, 70)( 17, 71)( 18, 72)( 19, 59)( 20, 60)( 21, 58)( 22, 57)( 23, 55)
( 24, 56)( 25, 61)( 26, 62)( 27, 63)( 28,104)( 29,105)( 30,103)( 31,102)
( 32,100)( 33,101)( 34,106)( 35,107)( 36,108)( 37, 95)( 38, 96)( 39, 94)
( 40, 93)( 41, 91)( 42, 92)( 43, 97)( 44, 98)( 45, 99)( 46, 86)( 47, 87)
( 48, 85)( 49, 84)( 50, 82)( 51, 83)( 52, 88)( 53, 89)( 54, 90);
s2 := Sym(112)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)
( 51, 53)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)
( 69, 71)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)
( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)
(105,107);
s3 := Sym(112)!(109,110);
s4 := Sym(112)!(111,112);
poly := sub<Sym(112)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope