Questions?
See the FAQ
or other info.

Polytope of Type {2,2,12,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,12,18}*1728b
if this polytope has a name.
Group : SmallGroup(1728,30872)
Rank : 5
Schlafli Type : {2,2,12,18}
Number of vertices, edges, etc : 2, 2, 12, 108, 18
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,6,18}*864b
   3-fold quotients : {2,2,4,18}*576a, {2,2,12,6}*576c
   4-fold quotients : {2,2,6,9}*432
   6-fold quotients : {2,2,2,18}*288, {2,2,6,6}*288b
   9-fold quotients : {2,2,4,6}*192a
   12-fold quotients : {2,2,2,9}*144, {2,2,6,3}*144
   18-fold quotients : {2,2,2,6}*96
   27-fold quotients : {2,2,4,2}*64
   36-fold quotients : {2,2,2,3}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  8, 11)(  9, 12)( 10, 13)( 17, 20)( 18, 21)( 19, 22)( 26, 29)( 27, 30)
( 28, 31)( 35, 38)( 36, 39)( 37, 40)( 44, 47)( 45, 48)( 46, 49)( 53, 56)
( 54, 57)( 55, 58)( 59, 86)( 60, 87)( 61, 88)( 62, 92)( 63, 93)( 64, 94)
( 65, 89)( 66, 90)( 67, 91)( 68, 95)( 69, 96)( 70, 97)( 71,101)( 72,102)
( 73,103)( 74, 98)( 75, 99)( 76,100)( 77,104)( 78,105)( 79,106)( 80,110)
( 81,111)( 82,112)( 83,107)( 84,108)( 85,109);;
s3 := (  5, 62)(  6, 64)(  7, 63)(  8, 59)(  9, 61)( 10, 60)( 11, 65)( 12, 67)
( 13, 66)( 14, 81)( 15, 80)( 16, 82)( 17, 78)( 18, 77)( 19, 79)( 20, 84)
( 21, 83)( 22, 85)( 23, 72)( 24, 71)( 25, 73)( 26, 69)( 27, 68)( 28, 70)
( 29, 75)( 30, 74)( 31, 76)( 32, 89)( 33, 91)( 34, 90)( 35, 86)( 36, 88)
( 37, 87)( 38, 92)( 39, 94)( 40, 93)( 41,108)( 42,107)( 43,109)( 44,105)
( 45,104)( 46,106)( 47,111)( 48,110)( 49,112)( 50, 99)( 51, 98)( 52,100)
( 53, 96)( 54, 95)( 55, 97)( 56,102)( 57,101)( 58,103);;
s4 := (  5, 14)(  6, 16)(  7, 15)(  8, 20)(  9, 22)( 10, 21)( 11, 17)( 12, 19)
( 13, 18)( 23, 24)( 26, 30)( 27, 29)( 28, 31)( 32, 41)( 33, 43)( 34, 42)
( 35, 47)( 36, 49)( 37, 48)( 38, 44)( 39, 46)( 40, 45)( 50, 51)( 53, 57)
( 54, 56)( 55, 58)( 59, 68)( 60, 70)( 61, 69)( 62, 74)( 63, 76)( 64, 75)
( 65, 71)( 66, 73)( 67, 72)( 77, 78)( 80, 84)( 81, 83)( 82, 85)( 86, 95)
( 87, 97)( 88, 96)( 89,101)( 90,103)( 91,102)( 92, 98)( 93,100)( 94, 99)
(104,105)(107,111)(108,110)(109,112);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(112)!(1,2);
s1 := Sym(112)!(3,4);
s2 := Sym(112)!(  8, 11)(  9, 12)( 10, 13)( 17, 20)( 18, 21)( 19, 22)( 26, 29)
( 27, 30)( 28, 31)( 35, 38)( 36, 39)( 37, 40)( 44, 47)( 45, 48)( 46, 49)
( 53, 56)( 54, 57)( 55, 58)( 59, 86)( 60, 87)( 61, 88)( 62, 92)( 63, 93)
( 64, 94)( 65, 89)( 66, 90)( 67, 91)( 68, 95)( 69, 96)( 70, 97)( 71,101)
( 72,102)( 73,103)( 74, 98)( 75, 99)( 76,100)( 77,104)( 78,105)( 79,106)
( 80,110)( 81,111)( 82,112)( 83,107)( 84,108)( 85,109);
s3 := Sym(112)!(  5, 62)(  6, 64)(  7, 63)(  8, 59)(  9, 61)( 10, 60)( 11, 65)
( 12, 67)( 13, 66)( 14, 81)( 15, 80)( 16, 82)( 17, 78)( 18, 77)( 19, 79)
( 20, 84)( 21, 83)( 22, 85)( 23, 72)( 24, 71)( 25, 73)( 26, 69)( 27, 68)
( 28, 70)( 29, 75)( 30, 74)( 31, 76)( 32, 89)( 33, 91)( 34, 90)( 35, 86)
( 36, 88)( 37, 87)( 38, 92)( 39, 94)( 40, 93)( 41,108)( 42,107)( 43,109)
( 44,105)( 45,104)( 46,106)( 47,111)( 48,110)( 49,112)( 50, 99)( 51, 98)
( 52,100)( 53, 96)( 54, 95)( 55, 97)( 56,102)( 57,101)( 58,103);
s4 := Sym(112)!(  5, 14)(  6, 16)(  7, 15)(  8, 20)(  9, 22)( 10, 21)( 11, 17)
( 12, 19)( 13, 18)( 23, 24)( 26, 30)( 27, 29)( 28, 31)( 32, 41)( 33, 43)
( 34, 42)( 35, 47)( 36, 49)( 37, 48)( 38, 44)( 39, 46)( 40, 45)( 50, 51)
( 53, 57)( 54, 56)( 55, 58)( 59, 68)( 60, 70)( 61, 69)( 62, 74)( 63, 76)
( 64, 75)( 65, 71)( 66, 73)( 67, 72)( 77, 78)( 80, 84)( 81, 83)( 82, 85)
( 86, 95)( 87, 97)( 88, 96)( 89,101)( 90,103)( 91,102)( 92, 98)( 93,100)
( 94, 99)(104,105)(107,111)(108,110)(109,112);
poly := sub<Sym(112)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope