Questions?
See the FAQ
or other info.

Polytope of Type {12,12,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,6}*1728d
if this polytope has a name.
Group : SmallGroup(1728,37586)
Rank : 4
Schlafli Type : {12,12,6}
Number of vertices, edges, etc : 12, 72, 36, 6
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,12,6}*864d, {12,6,6}*864c
   3-fold quotients : {4,12,6}*576b, {12,12,2}*576a
   4-fold quotients : {6,6,6}*432e
   6-fold quotients : {2,12,6}*288b, {6,12,2}*288a, {12,6,2}*288a, {4,6,6}*288b
   9-fold quotients : {4,12,2}*192a, {12,4,2}*192a
   12-fold quotients : {2,6,6}*144c, {6,6,2}*144a
   18-fold quotients : {2,12,2}*96, {12,2,2}*96, {4,6,2}*96a, {6,4,2}*96a
   24-fold quotients : {2,3,6}*72
   27-fold quotients : {4,4,2}*64
   36-fold quotients : {2,6,2}*48, {6,2,2}*48
   54-fold quotients : {2,4,2}*32, {4,2,2}*32
   72-fold quotients : {2,3,2}*24, {3,2,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 10, 19)( 11, 20)( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)( 17, 26)
( 18, 27)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)
( 44, 53)( 45, 54)( 64, 73)( 65, 74)( 66, 75)( 67, 76)( 68, 77)( 69, 78)
( 70, 79)( 71, 80)( 72, 81)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)
( 96,105)( 97,106)( 98,107)( 99,108)(109,136)(110,137)(111,138)(112,139)
(113,140)(114,141)(115,142)(116,143)(117,144)(118,154)(119,155)(120,156)
(121,157)(122,158)(123,159)(124,160)(125,161)(126,162)(127,145)(128,146)
(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(163,190)
(164,191)(165,192)(166,193)(167,194)(168,195)(169,196)(170,197)(171,198)
(172,208)(173,209)(174,210)(175,211)(176,212)(177,213)(178,214)(179,215)
(180,216)(181,199)(182,200)(183,201)(184,202)(185,203)(186,204)(187,205)
(188,206)(189,207);;
s1 := (  1,118)(  2,120)(  3,119)(  4,124)(  5,126)(  6,125)(  7,121)(  8,123)
(  9,122)( 10,109)( 11,111)( 12,110)( 13,115)( 14,117)( 15,116)( 16,112)
( 17,114)( 18,113)( 19,127)( 20,129)( 21,128)( 22,133)( 23,135)( 24,134)
( 25,130)( 26,132)( 27,131)( 28,145)( 29,147)( 30,146)( 31,151)( 32,153)
( 33,152)( 34,148)( 35,150)( 36,149)( 37,136)( 38,138)( 39,137)( 40,142)
( 41,144)( 42,143)( 43,139)( 44,141)( 45,140)( 46,154)( 47,156)( 48,155)
( 49,160)( 50,162)( 51,161)( 52,157)( 53,159)( 54,158)( 55,172)( 56,174)
( 57,173)( 58,178)( 59,180)( 60,179)( 61,175)( 62,177)( 63,176)( 64,163)
( 65,165)( 66,164)( 67,169)( 68,171)( 69,170)( 70,166)( 71,168)( 72,167)
( 73,181)( 74,183)( 75,182)( 76,187)( 77,189)( 78,188)( 79,184)( 80,186)
( 81,185)( 82,199)( 83,201)( 84,200)( 85,205)( 86,207)( 87,206)( 88,202)
( 89,204)( 90,203)( 91,190)( 92,192)( 93,191)( 94,196)( 95,198)( 96,197)
( 97,193)( 98,195)( 99,194)(100,208)(101,210)(102,209)(103,214)(104,216)
(105,215)(106,211)(107,213)(108,212);;
s2 := (  1,  5)(  2,  4)(  3,  6)(  7,  8)( 10, 14)( 11, 13)( 12, 15)( 16, 17)
( 19, 23)( 20, 22)( 21, 24)( 25, 26)( 28, 32)( 29, 31)( 30, 33)( 34, 35)
( 37, 41)( 38, 40)( 39, 42)( 43, 44)( 46, 50)( 47, 49)( 48, 51)( 52, 53)
( 55, 59)( 56, 58)( 57, 60)( 61, 62)( 64, 68)( 65, 67)( 66, 69)( 70, 71)
( 73, 77)( 74, 76)( 75, 78)( 79, 80)( 82, 86)( 83, 85)( 84, 87)( 88, 89)
( 91, 95)( 92, 94)( 93, 96)( 97, 98)(100,104)(101,103)(102,105)(106,107)
(109,167)(110,166)(111,168)(112,164)(113,163)(114,165)(115,170)(116,169)
(117,171)(118,176)(119,175)(120,177)(121,173)(122,172)(123,174)(124,179)
(125,178)(126,180)(127,185)(128,184)(129,186)(130,182)(131,181)(132,183)
(133,188)(134,187)(135,189)(136,194)(137,193)(138,195)(139,191)(140,190)
(141,192)(142,197)(143,196)(144,198)(145,203)(146,202)(147,204)(148,200)
(149,199)(150,201)(151,206)(152,205)(153,207)(154,212)(155,211)(156,213)
(157,209)(158,208)(159,210)(160,215)(161,214)(162,216);;
s3 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)(121,124)
(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)(141,144)
(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)(166,169)(167,170)
(168,171)(175,178)(176,179)(177,180)(184,187)(185,188)(186,189)(193,196)
(194,197)(195,198)(202,205)(203,206)(204,207)(211,214)(212,215)(213,216);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!( 10, 19)( 11, 20)( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)
( 17, 26)( 18, 27)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)
( 43, 52)( 44, 53)( 45, 54)( 64, 73)( 65, 74)( 66, 75)( 67, 76)( 68, 77)
( 69, 78)( 70, 79)( 71, 80)( 72, 81)( 91,100)( 92,101)( 93,102)( 94,103)
( 95,104)( 96,105)( 97,106)( 98,107)( 99,108)(109,136)(110,137)(111,138)
(112,139)(113,140)(114,141)(115,142)(116,143)(117,144)(118,154)(119,155)
(120,156)(121,157)(122,158)(123,159)(124,160)(125,161)(126,162)(127,145)
(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)
(163,190)(164,191)(165,192)(166,193)(167,194)(168,195)(169,196)(170,197)
(171,198)(172,208)(173,209)(174,210)(175,211)(176,212)(177,213)(178,214)
(179,215)(180,216)(181,199)(182,200)(183,201)(184,202)(185,203)(186,204)
(187,205)(188,206)(189,207);
s1 := Sym(216)!(  1,118)(  2,120)(  3,119)(  4,124)(  5,126)(  6,125)(  7,121)
(  8,123)(  9,122)( 10,109)( 11,111)( 12,110)( 13,115)( 14,117)( 15,116)
( 16,112)( 17,114)( 18,113)( 19,127)( 20,129)( 21,128)( 22,133)( 23,135)
( 24,134)( 25,130)( 26,132)( 27,131)( 28,145)( 29,147)( 30,146)( 31,151)
( 32,153)( 33,152)( 34,148)( 35,150)( 36,149)( 37,136)( 38,138)( 39,137)
( 40,142)( 41,144)( 42,143)( 43,139)( 44,141)( 45,140)( 46,154)( 47,156)
( 48,155)( 49,160)( 50,162)( 51,161)( 52,157)( 53,159)( 54,158)( 55,172)
( 56,174)( 57,173)( 58,178)( 59,180)( 60,179)( 61,175)( 62,177)( 63,176)
( 64,163)( 65,165)( 66,164)( 67,169)( 68,171)( 69,170)( 70,166)( 71,168)
( 72,167)( 73,181)( 74,183)( 75,182)( 76,187)( 77,189)( 78,188)( 79,184)
( 80,186)( 81,185)( 82,199)( 83,201)( 84,200)( 85,205)( 86,207)( 87,206)
( 88,202)( 89,204)( 90,203)( 91,190)( 92,192)( 93,191)( 94,196)( 95,198)
( 96,197)( 97,193)( 98,195)( 99,194)(100,208)(101,210)(102,209)(103,214)
(104,216)(105,215)(106,211)(107,213)(108,212);
s2 := Sym(216)!(  1,  5)(  2,  4)(  3,  6)(  7,  8)( 10, 14)( 11, 13)( 12, 15)
( 16, 17)( 19, 23)( 20, 22)( 21, 24)( 25, 26)( 28, 32)( 29, 31)( 30, 33)
( 34, 35)( 37, 41)( 38, 40)( 39, 42)( 43, 44)( 46, 50)( 47, 49)( 48, 51)
( 52, 53)( 55, 59)( 56, 58)( 57, 60)( 61, 62)( 64, 68)( 65, 67)( 66, 69)
( 70, 71)( 73, 77)( 74, 76)( 75, 78)( 79, 80)( 82, 86)( 83, 85)( 84, 87)
( 88, 89)( 91, 95)( 92, 94)( 93, 96)( 97, 98)(100,104)(101,103)(102,105)
(106,107)(109,167)(110,166)(111,168)(112,164)(113,163)(114,165)(115,170)
(116,169)(117,171)(118,176)(119,175)(120,177)(121,173)(122,172)(123,174)
(124,179)(125,178)(126,180)(127,185)(128,184)(129,186)(130,182)(131,181)
(132,183)(133,188)(134,187)(135,189)(136,194)(137,193)(138,195)(139,191)
(140,190)(141,192)(142,197)(143,196)(144,198)(145,203)(146,202)(147,204)
(148,200)(149,199)(150,201)(151,206)(152,205)(153,207)(154,212)(155,211)
(156,213)(157,209)(158,208)(159,210)(160,215)(161,214)(162,216);
s3 := Sym(216)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)
(121,124)(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)
(141,144)(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)(166,169)
(167,170)(168,171)(175,178)(176,179)(177,180)(184,187)(185,188)(186,189)
(193,196)(194,197)(195,198)(202,205)(203,206)(204,207)(211,214)(212,215)
(213,216);
poly := sub<Sym(216)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope