Questions?
See the FAQ
or other info.

Polytope of Type {6,6,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,24}*1728g
if this polytope has a name.
Group : SmallGroup(1728,37593)
Rank : 4
Schlafli Type : {6,6,24}
Number of vertices, edges, etc : 6, 18, 72, 24
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,12}*864g
   3-fold quotients : {6,6,8}*576b, {2,6,24}*576c
   4-fold quotients : {6,6,6}*432f
   6-fold quotients : {6,6,4}*288b, {2,6,12}*288c
   8-fold quotients : {6,3,6}*216
   9-fold quotients : {2,6,8}*192
   12-fold quotients : {2,6,6}*144c, {6,6,2}*144b
   18-fold quotients : {2,6,4}*96a
   24-fold quotients : {2,3,6}*72, {6,3,2}*72
   27-fold quotients : {2,2,8}*64
   36-fold quotients : {2,6,2}*48
   54-fold quotients : {2,2,4}*32
   72-fold quotients : {2,3,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)(121,124)
(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)(141,144)
(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)(166,169)(167,170)
(168,171)(175,178)(176,179)(177,180)(184,187)(185,188)(186,189)(193,196)
(194,197)(195,198)(202,205)(203,206)(204,207)(211,214)(212,215)(213,216);;
s1 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 22)( 11, 24)( 12, 23)( 13, 19)
( 14, 21)( 15, 20)( 16, 25)( 17, 27)( 18, 26)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)( 43, 52)
( 44, 54)( 45, 53)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 76)( 65, 78)
( 66, 77)( 67, 73)( 68, 75)( 69, 74)( 70, 79)( 71, 81)( 72, 80)( 82, 85)
( 83, 87)( 84, 86)( 89, 90)( 91,103)( 92,105)( 93,104)( 94,100)( 95,102)
( 96,101)( 97,106)( 98,108)( 99,107)(109,112)(110,114)(111,113)(116,117)
(118,130)(119,132)(120,131)(121,127)(122,129)(123,128)(124,133)(125,135)
(126,134)(136,139)(137,141)(138,140)(143,144)(145,157)(146,159)(147,158)
(148,154)(149,156)(150,155)(151,160)(152,162)(153,161)(163,166)(164,168)
(165,167)(170,171)(172,184)(173,186)(174,185)(175,181)(176,183)(177,182)
(178,187)(179,189)(180,188)(190,193)(191,195)(192,194)(197,198)(199,211)
(200,213)(201,212)(202,208)(203,210)(204,209)(205,214)(206,216)(207,215);;
s2 := (  1,119)(  2,118)(  3,120)(  4,125)(  5,124)(  6,126)(  7,122)(  8,121)
(  9,123)( 10,110)( 11,109)( 12,111)( 13,116)( 14,115)( 15,117)( 16,113)
( 17,112)( 18,114)( 19,128)( 20,127)( 21,129)( 22,134)( 23,133)( 24,135)
( 25,131)( 26,130)( 27,132)( 28,146)( 29,145)( 30,147)( 31,152)( 32,151)
( 33,153)( 34,149)( 35,148)( 36,150)( 37,137)( 38,136)( 39,138)( 40,143)
( 41,142)( 42,144)( 43,140)( 44,139)( 45,141)( 46,155)( 47,154)( 48,156)
( 49,161)( 50,160)( 51,162)( 52,158)( 53,157)( 54,159)( 55,200)( 56,199)
( 57,201)( 58,206)( 59,205)( 60,207)( 61,203)( 62,202)( 63,204)( 64,191)
( 65,190)( 66,192)( 67,197)( 68,196)( 69,198)( 70,194)( 71,193)( 72,195)
( 73,209)( 74,208)( 75,210)( 76,215)( 77,214)( 78,216)( 79,212)( 80,211)
( 81,213)( 82,173)( 83,172)( 84,174)( 85,179)( 86,178)( 87,180)( 88,176)
( 89,175)( 90,177)( 91,164)( 92,163)( 93,165)( 94,170)( 95,169)( 96,171)
( 97,167)( 98,166)( 99,168)(100,182)(101,181)(102,183)(103,188)(104,187)
(105,189)(106,185)(107,184)(108,186);;
s3 := ( 10, 19)( 11, 20)( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)( 17, 26)
( 18, 27)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)
( 44, 53)( 45, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)
( 61, 88)( 62, 89)( 63, 90)( 64,100)( 65,101)( 66,102)( 67,103)( 68,104)
( 69,105)( 70,106)( 71,107)( 72,108)( 73, 91)( 74, 92)( 75, 93)( 76, 94)
( 77, 95)( 78, 96)( 79, 97)( 80, 98)( 81, 99)(109,163)(110,164)(111,165)
(112,166)(113,167)(114,168)(115,169)(116,170)(117,171)(118,181)(119,182)
(120,183)(121,184)(122,185)(123,186)(124,187)(125,188)(126,189)(127,172)
(128,173)(129,174)(130,175)(131,176)(132,177)(133,178)(134,179)(135,180)
(136,190)(137,191)(138,192)(139,193)(140,194)(141,195)(142,196)(143,197)
(144,198)(145,208)(146,209)(147,210)(148,211)(149,212)(150,213)(151,214)
(152,215)(153,216)(154,199)(155,200)(156,201)(157,202)(158,203)(159,204)
(160,205)(161,206)(162,207);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)
(121,124)(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)
(141,144)(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)(166,169)
(167,170)(168,171)(175,178)(176,179)(177,180)(184,187)(185,188)(186,189)
(193,196)(194,197)(195,198)(202,205)(203,206)(204,207)(211,214)(212,215)
(213,216);
s1 := Sym(216)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 22)( 11, 24)( 12, 23)
( 13, 19)( 14, 21)( 15, 20)( 16, 25)( 17, 27)( 18, 26)( 28, 31)( 29, 33)
( 30, 32)( 35, 36)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)
( 43, 52)( 44, 54)( 45, 53)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 76)
( 65, 78)( 66, 77)( 67, 73)( 68, 75)( 69, 74)( 70, 79)( 71, 81)( 72, 80)
( 82, 85)( 83, 87)( 84, 86)( 89, 90)( 91,103)( 92,105)( 93,104)( 94,100)
( 95,102)( 96,101)( 97,106)( 98,108)( 99,107)(109,112)(110,114)(111,113)
(116,117)(118,130)(119,132)(120,131)(121,127)(122,129)(123,128)(124,133)
(125,135)(126,134)(136,139)(137,141)(138,140)(143,144)(145,157)(146,159)
(147,158)(148,154)(149,156)(150,155)(151,160)(152,162)(153,161)(163,166)
(164,168)(165,167)(170,171)(172,184)(173,186)(174,185)(175,181)(176,183)
(177,182)(178,187)(179,189)(180,188)(190,193)(191,195)(192,194)(197,198)
(199,211)(200,213)(201,212)(202,208)(203,210)(204,209)(205,214)(206,216)
(207,215);
s2 := Sym(216)!(  1,119)(  2,118)(  3,120)(  4,125)(  5,124)(  6,126)(  7,122)
(  8,121)(  9,123)( 10,110)( 11,109)( 12,111)( 13,116)( 14,115)( 15,117)
( 16,113)( 17,112)( 18,114)( 19,128)( 20,127)( 21,129)( 22,134)( 23,133)
( 24,135)( 25,131)( 26,130)( 27,132)( 28,146)( 29,145)( 30,147)( 31,152)
( 32,151)( 33,153)( 34,149)( 35,148)( 36,150)( 37,137)( 38,136)( 39,138)
( 40,143)( 41,142)( 42,144)( 43,140)( 44,139)( 45,141)( 46,155)( 47,154)
( 48,156)( 49,161)( 50,160)( 51,162)( 52,158)( 53,157)( 54,159)( 55,200)
( 56,199)( 57,201)( 58,206)( 59,205)( 60,207)( 61,203)( 62,202)( 63,204)
( 64,191)( 65,190)( 66,192)( 67,197)( 68,196)( 69,198)( 70,194)( 71,193)
( 72,195)( 73,209)( 74,208)( 75,210)( 76,215)( 77,214)( 78,216)( 79,212)
( 80,211)( 81,213)( 82,173)( 83,172)( 84,174)( 85,179)( 86,178)( 87,180)
( 88,176)( 89,175)( 90,177)( 91,164)( 92,163)( 93,165)( 94,170)( 95,169)
( 96,171)( 97,167)( 98,166)( 99,168)(100,182)(101,181)(102,183)(103,188)
(104,187)(105,189)(106,185)(107,184)(108,186);
s3 := Sym(216)!( 10, 19)( 11, 20)( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)
( 17, 26)( 18, 27)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)
( 43, 52)( 44, 53)( 45, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)
( 60, 87)( 61, 88)( 62, 89)( 63, 90)( 64,100)( 65,101)( 66,102)( 67,103)
( 68,104)( 69,105)( 70,106)( 71,107)( 72,108)( 73, 91)( 74, 92)( 75, 93)
( 76, 94)( 77, 95)( 78, 96)( 79, 97)( 80, 98)( 81, 99)(109,163)(110,164)
(111,165)(112,166)(113,167)(114,168)(115,169)(116,170)(117,171)(118,181)
(119,182)(120,183)(121,184)(122,185)(123,186)(124,187)(125,188)(126,189)
(127,172)(128,173)(129,174)(130,175)(131,176)(132,177)(133,178)(134,179)
(135,180)(136,190)(137,191)(138,192)(139,193)(140,194)(141,195)(142,196)
(143,197)(144,198)(145,208)(146,209)(147,210)(148,211)(149,212)(150,213)
(151,214)(152,215)(153,216)(154,199)(155,200)(156,201)(157,202)(158,203)
(159,204)(160,205)(161,206)(162,207);
poly := sub<Sym(216)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2 >; 
 
References : None.
to this polytope