Questions?
See the FAQ
or other info.

Polytope of Type {4,3,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,3,12}*1728
Also Known As : {{4,3}3,{3,12}6}. if this polytope has another name.
Group : SmallGroup(1728,46119)
Rank : 4
Schlafli Type : {4,3,12}
Number of vertices, edges, etc : 4, 36, 108, 72
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {4,3,12}*576
   4-fold quotients : {4,3,6}*432
   9-fold quotients : {4,3,4}*192a
   12-fold quotients : {4,3,6}*144
   18-fold quotients : {4,3,4}*96
   36-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)(  8, 16)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)
(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)
(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144);;
s1 := (  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 19, 20)( 23, 24)
( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)( 39, 40)( 41, 45)( 42, 46)
( 43, 48)( 44, 47)( 49, 97)( 50, 98)( 51,100)( 52, 99)( 53,101)( 54,102)
( 55,104)( 56,103)( 57,109)( 58,110)( 59,112)( 60,111)( 61,105)( 62,106)
( 63,108)( 64,107)( 65,113)( 66,114)( 67,116)( 68,115)( 69,117)( 70,118)
( 71,120)( 72,119)( 73,125)( 74,126)( 75,128)( 76,127)( 77,121)( 78,122)
( 79,124)( 80,123)( 81,129)( 82,130)( 83,132)( 84,131)( 85,133)( 86,134)
( 87,136)( 88,135)( 89,141)( 90,142)( 91,144)( 92,143)( 93,137)( 94,138)
( 95,140)( 96,139);;
s2 := (  1,113)(  2,116)(  3,115)(  4,114)(  5,125)(  6,128)(  7,127)(  8,126)
(  9,121)( 10,124)( 11,123)( 12,122)( 13,117)( 14,120)( 15,119)( 16,118)
( 17,129)( 18,132)( 19,131)( 20,130)( 21,141)( 22,144)( 23,143)( 24,142)
( 25,137)( 26,140)( 27,139)( 28,138)( 29,133)( 30,136)( 31,135)( 32,134)
( 33, 97)( 34,100)( 35, 99)( 36, 98)( 37,109)( 38,112)( 39,111)( 40,110)
( 41,105)( 42,108)( 43,107)( 44,106)( 45,101)( 46,104)( 47,103)( 48,102)
( 50, 52)( 53, 61)( 54, 64)( 55, 63)( 56, 62)( 58, 60)( 66, 68)( 69, 77)
( 70, 80)( 71, 79)( 72, 78)( 74, 76)( 82, 84)( 85, 93)( 86, 96)( 87, 95)
( 88, 94)( 90, 92);;
s3 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 34)( 18, 33)( 19, 36)( 20, 35)( 21, 38)( 22, 37)( 23, 40)( 24, 39)
( 25, 42)( 26, 41)( 27, 44)( 28, 43)( 29, 46)( 30, 45)( 31, 48)( 32, 47)
( 49, 98)( 50, 97)( 51,100)( 52, 99)( 53,102)( 54,101)( 55,104)( 56,103)
( 57,106)( 58,105)( 59,108)( 60,107)( 61,110)( 62,109)( 63,112)( 64,111)
( 65,130)( 66,129)( 67,132)( 68,131)( 69,134)( 70,133)( 71,136)( 72,135)
( 73,138)( 74,137)( 75,140)( 76,139)( 77,142)( 78,141)( 79,144)( 80,143)
( 81,114)( 82,113)( 83,116)( 84,115)( 85,118)( 86,117)( 87,120)( 88,119)
( 89,122)( 90,121)( 91,124)( 92,123)( 93,126)( 94,125)( 95,128)( 96,127);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(144)!(  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)
(  8, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)
( 40, 48)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)
( 56, 64)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)
( 72, 80)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)
(104,112)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)
(120,128)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)
(136,144);
s1 := Sym(144)!(  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 19, 20)
( 23, 24)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)( 39, 40)( 41, 45)
( 42, 46)( 43, 48)( 44, 47)( 49, 97)( 50, 98)( 51,100)( 52, 99)( 53,101)
( 54,102)( 55,104)( 56,103)( 57,109)( 58,110)( 59,112)( 60,111)( 61,105)
( 62,106)( 63,108)( 64,107)( 65,113)( 66,114)( 67,116)( 68,115)( 69,117)
( 70,118)( 71,120)( 72,119)( 73,125)( 74,126)( 75,128)( 76,127)( 77,121)
( 78,122)( 79,124)( 80,123)( 81,129)( 82,130)( 83,132)( 84,131)( 85,133)
( 86,134)( 87,136)( 88,135)( 89,141)( 90,142)( 91,144)( 92,143)( 93,137)
( 94,138)( 95,140)( 96,139);
s2 := Sym(144)!(  1,113)(  2,116)(  3,115)(  4,114)(  5,125)(  6,128)(  7,127)
(  8,126)(  9,121)( 10,124)( 11,123)( 12,122)( 13,117)( 14,120)( 15,119)
( 16,118)( 17,129)( 18,132)( 19,131)( 20,130)( 21,141)( 22,144)( 23,143)
( 24,142)( 25,137)( 26,140)( 27,139)( 28,138)( 29,133)( 30,136)( 31,135)
( 32,134)( 33, 97)( 34,100)( 35, 99)( 36, 98)( 37,109)( 38,112)( 39,111)
( 40,110)( 41,105)( 42,108)( 43,107)( 44,106)( 45,101)( 46,104)( 47,103)
( 48,102)( 50, 52)( 53, 61)( 54, 64)( 55, 63)( 56, 62)( 58, 60)( 66, 68)
( 69, 77)( 70, 80)( 71, 79)( 72, 78)( 74, 76)( 82, 84)( 85, 93)( 86, 96)
( 87, 95)( 88, 94)( 90, 92);
s3 := Sym(144)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 34)( 18, 33)( 19, 36)( 20, 35)( 21, 38)( 22, 37)( 23, 40)
( 24, 39)( 25, 42)( 26, 41)( 27, 44)( 28, 43)( 29, 46)( 30, 45)( 31, 48)
( 32, 47)( 49, 98)( 50, 97)( 51,100)( 52, 99)( 53,102)( 54,101)( 55,104)
( 56,103)( 57,106)( 58,105)( 59,108)( 60,107)( 61,110)( 62,109)( 63,112)
( 64,111)( 65,130)( 66,129)( 67,132)( 68,131)( 69,134)( 70,133)( 71,136)
( 72,135)( 73,138)( 74,137)( 75,140)( 76,139)( 77,142)( 78,141)( 79,144)
( 80,143)( 81,114)( 82,113)( 83,116)( 84,115)( 85,118)( 86,117)( 87,120)
( 88,119)( 89,122)( 90,121)( 91,124)( 92,123)( 93,126)( 94,125)( 95,128)
( 96,127);
poly := sub<Sym(144)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope