Questions?
See the FAQ
or other info.

# Polytope of Type {6,4,2,2}

Atlas Canonical Name : {6,4,2,2}*1728a
if this polytope has a name.
Group : SmallGroup(1728,46139)
Rank : 5
Schlafli Type : {6,4,2,2}
Number of vertices, edges, etc : 54, 108, 36, 2, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4,2,2}*864
3-fold quotients : {6,4,2,2}*576
6-fold quotients : {6,4,2,2}*288
27-fold quotients : {2,4,2,2}*64
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,46)
(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,37)(20,38)(21,39)
(22,43)(23,44)(24,45)(25,40)(26,41)(27,42);;
s1 := ( 1,10)( 2,12)( 3,11)( 4,14)( 5,13)( 6,15)( 7,18)( 8,17)( 9,16)(20,21)
(22,23)(25,27)(28,37)(29,39)(30,38)(31,41)(32,40)(33,42)(34,45)(35,44)(36,43)
(47,48)(49,50)(52,54);;
s2 := ( 1, 2)( 4,11)( 5,10)( 6,12)( 7,20)( 8,19)( 9,21)(13,15)(16,22)(17,24)
(18,23)(25,27)(28,29)(31,38)(32,37)(33,39)(34,47)(35,46)(36,48)(40,42)(43,49)
(44,51)(45,50)(52,54);;
s3 := (55,56);;
s4 := (57,58);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(58)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,46)(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,37)(20,38)
(21,39)(22,43)(23,44)(24,45)(25,40)(26,41)(27,42);
s1 := Sym(58)!( 1,10)( 2,12)( 3,11)( 4,14)( 5,13)( 6,15)( 7,18)( 8,17)( 9,16)
(20,21)(22,23)(25,27)(28,37)(29,39)(30,38)(31,41)(32,40)(33,42)(34,45)(35,44)
(36,43)(47,48)(49,50)(52,54);
s2 := Sym(58)!( 1, 2)( 4,11)( 5,10)( 6,12)( 7,20)( 8,19)( 9,21)(13,15)(16,22)
(17,24)(18,23)(25,27)(28,29)(31,38)(32,37)(33,39)(34,47)(35,46)(36,48)(40,42)
(43,49)(44,51)(45,50)(52,54);
s3 := Sym(58)!(55,56);
s4 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;

```

to this polytope