Questions?
See the FAQ
or other info.

Polytope of Type {12,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,2}*1728i
if this polytope has a name.
Group : SmallGroup(1728,46611)
Rank : 4
Schlafli Type : {12,12,2}
Number of vertices, edges, etc : 36, 216, 36, 2
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,6,2}*864h
   3-fold quotients : {4,12,2}*576
   6-fold quotients : {4,6,2}*288
   12-fold quotients : {4,6,2}*144
   27-fold quotients : {4,4,2}*64
   54-fold quotients : {2,4,2}*32, {4,2,2}*32
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4, 22)(  5, 24)(  6, 23)(  7, 16)(  8, 18)(  9, 17)( 10, 19)
( 11, 21)( 12, 20)( 14, 15)( 26, 27)( 29, 30)( 31, 49)( 32, 51)( 33, 50)
( 34, 43)( 35, 45)( 36, 44)( 37, 46)( 38, 48)( 39, 47)( 41, 42)( 53, 54)
( 56, 57)( 58, 76)( 59, 78)( 60, 77)( 61, 70)( 62, 72)( 63, 71)( 64, 73)
( 65, 75)( 66, 74)( 68, 69)( 80, 81)( 83, 84)( 85,103)( 86,105)( 87,104)
( 88, 97)( 89, 99)( 90, 98)( 91,100)( 92,102)( 93,101)( 95, 96)(107,108)
(109,190)(110,192)(111,191)(112,211)(113,213)(114,212)(115,205)(116,207)
(117,206)(118,208)(119,210)(120,209)(121,202)(122,204)(123,203)(124,196)
(125,198)(126,197)(127,199)(128,201)(129,200)(130,193)(131,195)(132,194)
(133,214)(134,216)(135,215)(136,163)(137,165)(138,164)(139,184)(140,186)
(141,185)(142,178)(143,180)(144,179)(145,181)(146,183)(147,182)(148,175)
(149,177)(150,176)(151,169)(152,171)(153,170)(154,172)(155,174)(156,173)
(157,166)(158,168)(159,167)(160,187)(161,189)(162,188);;
s1 := (  1,110)(  2,109)(  3,111)(  4,113)(  5,112)(  6,114)(  7,116)(  8,115)
(  9,117)( 10,134)( 11,133)( 12,135)( 13,128)( 14,127)( 15,129)( 16,131)
( 17,130)( 18,132)( 19,122)( 20,121)( 21,123)( 22,125)( 23,124)( 24,126)
( 25,119)( 26,118)( 27,120)( 28,137)( 29,136)( 30,138)( 31,140)( 32,139)
( 33,141)( 34,143)( 35,142)( 36,144)( 37,161)( 38,160)( 39,162)( 40,155)
( 41,154)( 42,156)( 43,158)( 44,157)( 45,159)( 46,149)( 47,148)( 48,150)
( 49,152)( 50,151)( 51,153)( 52,146)( 53,145)( 54,147)( 55,164)( 56,163)
( 57,165)( 58,167)( 59,166)( 60,168)( 61,170)( 62,169)( 63,171)( 64,188)
( 65,187)( 66,189)( 67,182)( 68,181)( 69,183)( 70,185)( 71,184)( 72,186)
( 73,176)( 74,175)( 75,177)( 76,179)( 77,178)( 78,180)( 79,173)( 80,172)
( 81,174)( 82,191)( 83,190)( 84,192)( 85,194)( 86,193)( 87,195)( 88,197)
( 89,196)( 90,198)( 91,215)( 92,214)( 93,216)( 94,209)( 95,208)( 96,210)
( 97,212)( 98,211)( 99,213)(100,203)(101,202)(102,204)(103,206)(104,205)
(105,207)(106,200)(107,199)(108,201);;
s2 := (  1, 67)(  2, 69)(  3, 68)(  4, 64)(  5, 66)(  6, 65)(  7, 70)(  8, 72)
(  9, 71)( 10, 58)( 11, 60)( 12, 59)( 13, 55)( 14, 57)( 15, 56)( 16, 61)
( 17, 63)( 18, 62)( 19, 76)( 20, 78)( 21, 77)( 22, 73)( 23, 75)( 24, 74)
( 25, 79)( 26, 81)( 27, 80)( 28, 94)( 29, 96)( 30, 95)( 31, 91)( 32, 93)
( 33, 92)( 34, 97)( 35, 99)( 36, 98)( 37, 85)( 38, 87)( 39, 86)( 40, 82)
( 41, 84)( 42, 83)( 43, 88)( 44, 90)( 45, 89)( 46,103)( 47,105)( 48,104)
( 49,100)( 50,102)( 51,101)( 52,106)( 53,108)( 54,107)(109,202)(110,204)
(111,203)(112,199)(113,201)(114,200)(115,205)(116,207)(117,206)(118,193)
(119,195)(120,194)(121,190)(122,192)(123,191)(124,196)(125,198)(126,197)
(127,211)(128,213)(129,212)(130,208)(131,210)(132,209)(133,214)(134,216)
(135,215)(136,175)(137,177)(138,176)(139,172)(140,174)(141,173)(142,178)
(143,180)(144,179)(145,166)(146,168)(147,167)(148,163)(149,165)(150,164)
(151,169)(152,171)(153,170)(154,184)(155,186)(156,185)(157,181)(158,183)
(159,182)(160,187)(161,189)(162,188);;
s3 := (217,218);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(218)!(  2,  3)(  4, 22)(  5, 24)(  6, 23)(  7, 16)(  8, 18)(  9, 17)
( 10, 19)( 11, 21)( 12, 20)( 14, 15)( 26, 27)( 29, 30)( 31, 49)( 32, 51)
( 33, 50)( 34, 43)( 35, 45)( 36, 44)( 37, 46)( 38, 48)( 39, 47)( 41, 42)
( 53, 54)( 56, 57)( 58, 76)( 59, 78)( 60, 77)( 61, 70)( 62, 72)( 63, 71)
( 64, 73)( 65, 75)( 66, 74)( 68, 69)( 80, 81)( 83, 84)( 85,103)( 86,105)
( 87,104)( 88, 97)( 89, 99)( 90, 98)( 91,100)( 92,102)( 93,101)( 95, 96)
(107,108)(109,190)(110,192)(111,191)(112,211)(113,213)(114,212)(115,205)
(116,207)(117,206)(118,208)(119,210)(120,209)(121,202)(122,204)(123,203)
(124,196)(125,198)(126,197)(127,199)(128,201)(129,200)(130,193)(131,195)
(132,194)(133,214)(134,216)(135,215)(136,163)(137,165)(138,164)(139,184)
(140,186)(141,185)(142,178)(143,180)(144,179)(145,181)(146,183)(147,182)
(148,175)(149,177)(150,176)(151,169)(152,171)(153,170)(154,172)(155,174)
(156,173)(157,166)(158,168)(159,167)(160,187)(161,189)(162,188);
s1 := Sym(218)!(  1,110)(  2,109)(  3,111)(  4,113)(  5,112)(  6,114)(  7,116)
(  8,115)(  9,117)( 10,134)( 11,133)( 12,135)( 13,128)( 14,127)( 15,129)
( 16,131)( 17,130)( 18,132)( 19,122)( 20,121)( 21,123)( 22,125)( 23,124)
( 24,126)( 25,119)( 26,118)( 27,120)( 28,137)( 29,136)( 30,138)( 31,140)
( 32,139)( 33,141)( 34,143)( 35,142)( 36,144)( 37,161)( 38,160)( 39,162)
( 40,155)( 41,154)( 42,156)( 43,158)( 44,157)( 45,159)( 46,149)( 47,148)
( 48,150)( 49,152)( 50,151)( 51,153)( 52,146)( 53,145)( 54,147)( 55,164)
( 56,163)( 57,165)( 58,167)( 59,166)( 60,168)( 61,170)( 62,169)( 63,171)
( 64,188)( 65,187)( 66,189)( 67,182)( 68,181)( 69,183)( 70,185)( 71,184)
( 72,186)( 73,176)( 74,175)( 75,177)( 76,179)( 77,178)( 78,180)( 79,173)
( 80,172)( 81,174)( 82,191)( 83,190)( 84,192)( 85,194)( 86,193)( 87,195)
( 88,197)( 89,196)( 90,198)( 91,215)( 92,214)( 93,216)( 94,209)( 95,208)
( 96,210)( 97,212)( 98,211)( 99,213)(100,203)(101,202)(102,204)(103,206)
(104,205)(105,207)(106,200)(107,199)(108,201);
s2 := Sym(218)!(  1, 67)(  2, 69)(  3, 68)(  4, 64)(  5, 66)(  6, 65)(  7, 70)
(  8, 72)(  9, 71)( 10, 58)( 11, 60)( 12, 59)( 13, 55)( 14, 57)( 15, 56)
( 16, 61)( 17, 63)( 18, 62)( 19, 76)( 20, 78)( 21, 77)( 22, 73)( 23, 75)
( 24, 74)( 25, 79)( 26, 81)( 27, 80)( 28, 94)( 29, 96)( 30, 95)( 31, 91)
( 32, 93)( 33, 92)( 34, 97)( 35, 99)( 36, 98)( 37, 85)( 38, 87)( 39, 86)
( 40, 82)( 41, 84)( 42, 83)( 43, 88)( 44, 90)( 45, 89)( 46,103)( 47,105)
( 48,104)( 49,100)( 50,102)( 51,101)( 52,106)( 53,108)( 54,107)(109,202)
(110,204)(111,203)(112,199)(113,201)(114,200)(115,205)(116,207)(117,206)
(118,193)(119,195)(120,194)(121,190)(122,192)(123,191)(124,196)(125,198)
(126,197)(127,211)(128,213)(129,212)(130,208)(131,210)(132,209)(133,214)
(134,216)(135,215)(136,175)(137,177)(138,176)(139,172)(140,174)(141,173)
(142,178)(143,180)(144,179)(145,166)(146,168)(147,167)(148,163)(149,165)
(150,164)(151,169)(152,171)(153,170)(154,184)(155,186)(156,185)(157,181)
(158,183)(159,182)(160,187)(161,189)(162,188);
s3 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 

to this polytope