Questions?
See the FAQ
or other info.

Polytope of Type {4,12,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,6}*1728p
if this polytope has a name.
Group : SmallGroup(1728,46671)
Rank : 4
Schlafli Type : {4,12,6}
Number of vertices, edges, etc : 4, 72, 108, 18
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,12,6}*864h
   3-fold quotients : {4,4,6}*576
   6-fold quotients : {4,4,6}*288, {2,4,6}*288
   12-fold quotients : {2,4,6}*144
   27-fold quotients : {4,4,2}*64
   54-fold quotients : {2,4,2}*32, {4,2,2}*32
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)(  8, 62)
(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)
( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)
( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)
( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
s1 := (  4,  9)(  5,  7)(  6,  8)( 10, 19)( 11, 20)( 12, 21)( 13, 27)( 14, 25)
( 15, 26)( 16, 23)( 17, 24)( 18, 22)( 31, 36)( 32, 34)( 33, 35)( 37, 46)
( 38, 47)( 39, 48)( 40, 54)( 41, 52)( 42, 53)( 43, 50)( 44, 51)( 45, 49)
( 55, 82)( 56, 83)( 57, 84)( 58, 90)( 59, 88)( 60, 89)( 61, 86)( 62, 87)
( 63, 85)( 64,100)( 65,101)( 66,102)( 67,108)( 68,106)( 69,107)( 70,104)
( 71,105)( 72,103)( 73, 91)( 74, 92)( 75, 93)( 76, 99)( 77, 97)( 78, 98)
( 79, 95)( 80, 96)( 81, 94);;
s2 := (  1, 10)(  2, 17)(  3, 15)(  4, 16)(  5, 14)(  6, 12)(  7, 13)(  8, 11)
(  9, 18)( 20, 26)( 21, 24)( 22, 25)( 28, 37)( 29, 44)( 30, 42)( 31, 43)
( 32, 41)( 33, 39)( 34, 40)( 35, 38)( 36, 45)( 47, 53)( 48, 51)( 49, 52)
( 55, 64)( 56, 71)( 57, 69)( 58, 70)( 59, 68)( 60, 66)( 61, 67)( 62, 65)
( 63, 72)( 74, 80)( 75, 78)( 76, 79)( 82, 91)( 83, 98)( 84, 96)( 85, 97)
( 86, 95)( 87, 93)( 88, 94)( 89, 92)( 90, 99)(101,107)(102,105)(103,106);;
s3 := (  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 20)( 11, 19)( 12, 21)( 13, 26)
( 14, 25)( 15, 27)( 16, 23)( 17, 22)( 18, 24)( 28, 29)( 31, 35)( 32, 34)
( 33, 36)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)( 43, 50)
( 44, 49)( 45, 51)( 55, 56)( 58, 62)( 59, 61)( 60, 63)( 64, 74)( 65, 73)
( 66, 75)( 67, 80)( 68, 79)( 69, 81)( 70, 77)( 71, 76)( 72, 78)( 82, 83)
( 85, 89)( 86, 88)( 87, 90)( 91,101)( 92,100)( 93,102)( 94,107)( 95,106)
( 96,108)( 97,104)( 98,103)( 99,105);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)
(  8, 62)(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)
( 16, 70)( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)
( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)
( 40, 94)( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
s1 := Sym(108)!(  4,  9)(  5,  7)(  6,  8)( 10, 19)( 11, 20)( 12, 21)( 13, 27)
( 14, 25)( 15, 26)( 16, 23)( 17, 24)( 18, 22)( 31, 36)( 32, 34)( 33, 35)
( 37, 46)( 38, 47)( 39, 48)( 40, 54)( 41, 52)( 42, 53)( 43, 50)( 44, 51)
( 45, 49)( 55, 82)( 56, 83)( 57, 84)( 58, 90)( 59, 88)( 60, 89)( 61, 86)
( 62, 87)( 63, 85)( 64,100)( 65,101)( 66,102)( 67,108)( 68,106)( 69,107)
( 70,104)( 71,105)( 72,103)( 73, 91)( 74, 92)( 75, 93)( 76, 99)( 77, 97)
( 78, 98)( 79, 95)( 80, 96)( 81, 94);
s2 := Sym(108)!(  1, 10)(  2, 17)(  3, 15)(  4, 16)(  5, 14)(  6, 12)(  7, 13)
(  8, 11)(  9, 18)( 20, 26)( 21, 24)( 22, 25)( 28, 37)( 29, 44)( 30, 42)
( 31, 43)( 32, 41)( 33, 39)( 34, 40)( 35, 38)( 36, 45)( 47, 53)( 48, 51)
( 49, 52)( 55, 64)( 56, 71)( 57, 69)( 58, 70)( 59, 68)( 60, 66)( 61, 67)
( 62, 65)( 63, 72)( 74, 80)( 75, 78)( 76, 79)( 82, 91)( 83, 98)( 84, 96)
( 85, 97)( 86, 95)( 87, 93)( 88, 94)( 89, 92)( 90, 99)(101,107)(102,105)
(103,106);
s3 := Sym(108)!(  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 20)( 11, 19)( 12, 21)
( 13, 26)( 14, 25)( 15, 27)( 16, 23)( 17, 22)( 18, 24)( 28, 29)( 31, 35)
( 32, 34)( 33, 36)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)
( 43, 50)( 44, 49)( 45, 51)( 55, 56)( 58, 62)( 59, 61)( 60, 63)( 64, 74)
( 65, 73)( 66, 75)( 67, 80)( 68, 79)( 69, 81)( 70, 77)( 71, 76)( 72, 78)
( 82, 83)( 85, 89)( 86, 88)( 87, 90)( 91,101)( 92,100)( 93,102)( 94,107)
( 95,106)( 96,108)( 97,104)( 98,103)( 99,105);
poly := sub<Sym(108)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope