Questions?
See the FAQ
or other info.

Polytope of Type {6,4,4,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,4,3}*1728
if this polytope has a name.
Group : SmallGroup(1728,47847)
Rank : 5
Schlafli Type : {6,4,4,3}
Number of vertices, edges, etc : 9, 18, 24, 12, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {6,4,2,3}*432
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)(18,34)
(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);;
s1 := ( 1,13)( 2,14)( 3,15)( 4,16)( 9,33)(10,34)(11,35)(12,36)(17,29)(18,30)
(19,31)(20,32);;
s2 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,35)(14,36)(15,33)(16,34)
(17,27)(18,28)(19,25)(20,26)(21,31)(22,32)(23,29)(24,30);;
s3 := ( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)(31,32)(35,36);;
s4 := ( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(36)!( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)
(18,34)(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);
s1 := Sym(36)!( 1,13)( 2,14)( 3,15)( 4,16)( 9,33)(10,34)(11,35)(12,36)(17,29)
(18,30)(19,31)(20,32);
s2 := Sym(36)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,35)(14,36)(15,33)
(16,34)(17,27)(18,28)(19,25)(20,26)(21,31)(22,32)(23,29)(24,30);
s3 := Sym(36)!( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)(31,32)(35,36);
s4 := Sym(36)!( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36);
poly := sub<Sym(36)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope