Questions?
See the FAQ
or other info.

Polytope of Type {12,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12}*1728aa
if this polytope has a name.
Group : SmallGroup(1728,47870)
Rank : 3
Schlafli Type : {12,12}
Number of vertices, edges, etc : 72, 432, 72
Order of s0s1s2 : 12
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,12}*864n
   4-fold quotients : {12,6}*432i
   8-fold quotients : {12,6}*216c
   9-fold quotients : {12,4}*192b
   12-fold quotients : {4,6}*144
   18-fold quotients : {12,4}*96b, {12,4}*96c, {6,4}*96
   24-fold quotients : {4,6}*72
   36-fold quotients : {12,2}*48, {3,4}*48, {6,4}*48b, {6,4}*48c
   72-fold quotients : {3,4}*24, {6,2}*24
   108-fold quotients : {4,2}*16
   144-fold quotients : {3,2}*12
   216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)( 17, 29)
( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 37, 73)
( 38, 74)( 39, 76)( 40, 75)( 41, 77)( 42, 78)( 43, 80)( 44, 79)( 45, 81)
( 46, 82)( 47, 84)( 48, 83)( 49, 97)( 50, 98)( 51,100)( 52, 99)( 53,101)
( 54,102)( 55,104)( 56,103)( 57,105)( 58,106)( 59,108)( 60,107)( 61, 85)
( 62, 86)( 63, 88)( 64, 87)( 65, 89)( 66, 90)( 67, 92)( 68, 91)( 69, 93)
( 70, 94)( 71, 96)( 72, 95)(111,112)(115,116)(119,120)(121,133)(122,134)
(123,136)(124,135)(125,137)(126,138)(127,140)(128,139)(129,141)(130,142)
(131,144)(132,143)(145,181)(146,182)(147,184)(148,183)(149,185)(150,186)
(151,188)(152,187)(153,189)(154,190)(155,192)(156,191)(157,205)(158,206)
(159,208)(160,207)(161,209)(162,210)(163,212)(164,211)(165,213)(166,214)
(167,216)(168,215)(169,193)(170,194)(171,196)(172,195)(173,197)(174,198)
(175,200)(176,199)(177,201)(178,202)(179,204)(180,203);;
s1 := (  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 61)(  6, 64)(  7, 63)(  8, 62)
(  9, 49)( 10, 52)( 11, 51)( 12, 50)( 13, 45)( 14, 48)( 15, 47)( 16, 46)
( 17, 69)( 18, 72)( 19, 71)( 20, 70)( 21, 57)( 22, 60)( 23, 59)( 24, 58)
( 25, 41)( 26, 44)( 27, 43)( 28, 42)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 53)( 34, 56)( 35, 55)( 36, 54)( 74, 76)( 77, 97)( 78,100)( 79, 99)
( 80, 98)( 81, 85)( 82, 88)( 83, 87)( 84, 86)( 89,105)( 90,108)( 91,107)
( 92,106)( 94, 96)(102,104)(109,145)(110,148)(111,147)(112,146)(113,169)
(114,172)(115,171)(116,170)(117,157)(118,160)(119,159)(120,158)(121,153)
(122,156)(123,155)(124,154)(125,177)(126,180)(127,179)(128,178)(129,165)
(130,168)(131,167)(132,166)(133,149)(134,152)(135,151)(136,150)(137,173)
(138,176)(139,175)(140,174)(141,161)(142,164)(143,163)(144,162)(182,184)
(185,205)(186,208)(187,207)(188,206)(189,193)(190,196)(191,195)(192,194)
(197,213)(198,216)(199,215)(200,214)(202,204)(210,212);;
s2 := (  1,114)(  2,113)(  3,116)(  4,115)(  5,110)(  6,109)(  7,112)(  8,111)
(  9,118)( 10,117)( 11,120)( 12,119)( 13,138)( 14,137)( 15,140)( 16,139)
( 17,134)( 18,133)( 19,136)( 20,135)( 21,142)( 22,141)( 23,144)( 24,143)
( 25,126)( 26,125)( 27,128)( 28,127)( 29,122)( 30,121)( 31,124)( 32,123)
( 33,130)( 34,129)( 35,132)( 36,131)( 37,150)( 38,149)( 39,152)( 40,151)
( 41,146)( 42,145)( 43,148)( 44,147)( 45,154)( 46,153)( 47,156)( 48,155)
( 49,174)( 50,173)( 51,176)( 52,175)( 53,170)( 54,169)( 55,172)( 56,171)
( 57,178)( 58,177)( 59,180)( 60,179)( 61,162)( 62,161)( 63,164)( 64,163)
( 65,158)( 66,157)( 67,160)( 68,159)( 69,166)( 70,165)( 71,168)( 72,167)
( 73,186)( 74,185)( 75,188)( 76,187)( 77,182)( 78,181)( 79,184)( 80,183)
( 81,190)( 82,189)( 83,192)( 84,191)( 85,210)( 86,209)( 87,212)( 88,211)
( 89,206)( 90,205)( 91,208)( 92,207)( 93,214)( 94,213)( 95,216)( 96,215)
( 97,198)( 98,197)( 99,200)(100,199)(101,194)(102,193)(103,196)(104,195)
(105,202)(106,201)(107,204)(108,203);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!(  3,  4)(  7,  8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)
( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)
( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 77)( 42, 78)( 43, 80)( 44, 79)
( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 97)( 50, 98)( 51,100)( 52, 99)
( 53,101)( 54,102)( 55,104)( 56,103)( 57,105)( 58,106)( 59,108)( 60,107)
( 61, 85)( 62, 86)( 63, 88)( 64, 87)( 65, 89)( 66, 90)( 67, 92)( 68, 91)
( 69, 93)( 70, 94)( 71, 96)( 72, 95)(111,112)(115,116)(119,120)(121,133)
(122,134)(123,136)(124,135)(125,137)(126,138)(127,140)(128,139)(129,141)
(130,142)(131,144)(132,143)(145,181)(146,182)(147,184)(148,183)(149,185)
(150,186)(151,188)(152,187)(153,189)(154,190)(155,192)(156,191)(157,205)
(158,206)(159,208)(160,207)(161,209)(162,210)(163,212)(164,211)(165,213)
(166,214)(167,216)(168,215)(169,193)(170,194)(171,196)(172,195)(173,197)
(174,198)(175,200)(176,199)(177,201)(178,202)(179,204)(180,203);
s1 := Sym(216)!(  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 61)(  6, 64)(  7, 63)
(  8, 62)(  9, 49)( 10, 52)( 11, 51)( 12, 50)( 13, 45)( 14, 48)( 15, 47)
( 16, 46)( 17, 69)( 18, 72)( 19, 71)( 20, 70)( 21, 57)( 22, 60)( 23, 59)
( 24, 58)( 25, 41)( 26, 44)( 27, 43)( 28, 42)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 53)( 34, 56)( 35, 55)( 36, 54)( 74, 76)( 77, 97)( 78,100)
( 79, 99)( 80, 98)( 81, 85)( 82, 88)( 83, 87)( 84, 86)( 89,105)( 90,108)
( 91,107)( 92,106)( 94, 96)(102,104)(109,145)(110,148)(111,147)(112,146)
(113,169)(114,172)(115,171)(116,170)(117,157)(118,160)(119,159)(120,158)
(121,153)(122,156)(123,155)(124,154)(125,177)(126,180)(127,179)(128,178)
(129,165)(130,168)(131,167)(132,166)(133,149)(134,152)(135,151)(136,150)
(137,173)(138,176)(139,175)(140,174)(141,161)(142,164)(143,163)(144,162)
(182,184)(185,205)(186,208)(187,207)(188,206)(189,193)(190,196)(191,195)
(192,194)(197,213)(198,216)(199,215)(200,214)(202,204)(210,212);
s2 := Sym(216)!(  1,114)(  2,113)(  3,116)(  4,115)(  5,110)(  6,109)(  7,112)
(  8,111)(  9,118)( 10,117)( 11,120)( 12,119)( 13,138)( 14,137)( 15,140)
( 16,139)( 17,134)( 18,133)( 19,136)( 20,135)( 21,142)( 22,141)( 23,144)
( 24,143)( 25,126)( 26,125)( 27,128)( 28,127)( 29,122)( 30,121)( 31,124)
( 32,123)( 33,130)( 34,129)( 35,132)( 36,131)( 37,150)( 38,149)( 39,152)
( 40,151)( 41,146)( 42,145)( 43,148)( 44,147)( 45,154)( 46,153)( 47,156)
( 48,155)( 49,174)( 50,173)( 51,176)( 52,175)( 53,170)( 54,169)( 55,172)
( 56,171)( 57,178)( 58,177)( 59,180)( 60,179)( 61,162)( 62,161)( 63,164)
( 64,163)( 65,158)( 66,157)( 67,160)( 68,159)( 69,166)( 70,165)( 71,168)
( 72,167)( 73,186)( 74,185)( 75,188)( 76,187)( 77,182)( 78,181)( 79,184)
( 80,183)( 81,190)( 82,189)( 83,192)( 84,191)( 85,210)( 86,209)( 87,212)
( 88,211)( 89,206)( 90,205)( 91,208)( 92,207)( 93,214)( 94,213)( 95,216)
( 96,215)( 97,198)( 98,197)( 99,200)(100,199)(101,194)(102,193)(103,196)
(104,195)(105,202)(106,201)(107,204)(108,203);
poly := sub<Sym(216)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope