Questions?
See the FAQ
or other info.

# Polytope of Type {6,12,2}

Atlas Canonical Name : {6,12,2}*1728c
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 4
Schlafli Type : {6,12,2}
Number of vertices, edges, etc : 36, 216, 72, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,12,2}*576a, {6,12,2}*576b
4-fold quotients : {6,6,2}*432d
6-fold quotients : {3,12,2}*288, {6,12,2}*288d
9-fold quotients : {6,4,2}*192
12-fold quotients : {6,6,2}*144a, {6,6,2}*144b, {6,6,2}*144c
18-fold quotients : {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
24-fold quotients : {3,6,2}*72, {6,3,2}*72
36-fold quotients : {3,4,2}*48, {2,6,2}*48, {6,2,2}*48
72-fold quotients : {2,3,2}*24, {3,2,2}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(26,27)(29,33)(30,35)(31,34)(32,36);;
s1 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(13,29)(14,30)(15,32)(16,31)(17,25)
(18,26)(19,28)(20,27)(21,33)(22,34)(23,36)(24,35);;
s2 := ( 1,16)( 2,15)( 3,14)( 4,13)( 5,24)( 6,23)( 7,22)( 8,21)( 9,20)(10,19)
(11,18)(12,17)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33);;
s3 := (37,38);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(38)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(26,27)(29,33)(30,35)(31,34)(32,36);
s1 := Sym(38)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(13,29)(14,30)(15,32)(16,31)
(17,25)(18,26)(19,28)(20,27)(21,33)(22,34)(23,36)(24,35);
s2 := Sym(38)!( 1,16)( 2,15)( 3,14)( 4,13)( 5,24)( 6,23)( 7,22)( 8,21)( 9,20)
(10,19)(11,18)(12,17)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33);
s3 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;

```

to this polytope