Questions?
See the FAQ
or other info.

Polytope of Type {12,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6,2}*1728c
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 4
Schlafli Type : {12,6,2}
Number of vertices, edges, etc : 72, 216, 36, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {12,6,2}*576a, {12,6,2}*576b
   4-fold quotients : {6,6,2}*432d
   6-fold quotients : {12,3,2}*288, {12,6,2}*288d
   9-fold quotients : {4,6,2}*192
   12-fold quotients : {6,6,2}*144a, {6,6,2}*144b, {6,6,2}*144c
   18-fold quotients : {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
   24-fold quotients : {3,6,2}*72, {6,3,2}*72
   36-fold quotients : {4,3,2}*48, {2,6,2}*48, {6,2,2}*48
   72-fold quotients : {2,3,2}*24, {3,2,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)(13,27)(14,28)(15,25)(16,26)
(17,35)(18,36)(19,33)(20,34)(21,31)(22,32)(23,29)(24,30);;
s1 := ( 1,17)( 2,19)( 3,18)( 4,20)( 5,13)( 6,15)( 7,14)( 8,16)( 9,21)(10,23)
(11,22)(12,24)(25,29)(26,31)(27,30)(28,32)(34,35);;
s2 := ( 2, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(14,16)(17,21)(18,24)(19,23)(20,22)
(26,28)(29,33)(30,36)(31,35)(32,34);;
s3 := (37,38);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)(13,27)(14,28)(15,25)
(16,26)(17,35)(18,36)(19,33)(20,34)(21,31)(22,32)(23,29)(24,30);
s1 := Sym(38)!( 1,17)( 2,19)( 3,18)( 4,20)( 5,13)( 6,15)( 7,14)( 8,16)( 9,21)
(10,23)(11,22)(12,24)(25,29)(26,31)(27,30)(28,32)(34,35);
s2 := Sym(38)!( 2, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(14,16)(17,21)(18,24)(19,23)
(20,22)(26,28)(29,33)(30,36)(31,35)(32,34);
s3 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope