Questions?
See the FAQ
or other info.

Polytope of Type {6,3,6,2,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,6,2,2,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,47915)
Rank : 7
Schlafli Type : {6,3,6,2,2,2}
Number of vertices, edges, etc : 6, 9, 9, 6, 2, 2, 2
Order of s0s1s2s3s4s5s6 : 6
Order of s0s1s2s3s4s5s6s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,3,6,2,2,2}*576, {6,3,2,2,2,2}*576
   9-fold quotients : {2,3,2,2,2,2}*192
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27);;
s1 := ( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)(20,21)
(22,25)(23,27)(24,26);;
s2 := ( 1, 5)( 2, 4)( 3, 6)( 7, 8)(10,23)(11,22)(12,24)(13,20)(14,19)(15,21)
(16,26)(17,25)(18,27);;
s3 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27);;
s4 := (28,29);;
s5 := (30,31);;
s6 := (32,33);;
poly := Group([s0,s1,s2,s3,s4,s5,s6]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5","s6");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  s6 := F.7;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s6*s6, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s0*s6*s0*s6, s1*s6*s1*s6, s2*s6*s2*s6, 
s3*s6*s3*s6, s4*s6*s4*s6, s5*s6*s5*s6, 
s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27);
s1 := Sym(33)!( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)
(20,21)(22,25)(23,27)(24,26);
s2 := Sym(33)!( 1, 5)( 2, 4)( 3, 6)( 7, 8)(10,23)(11,22)(12,24)(13,20)(14,19)
(15,21)(16,26)(17,25)(18,27);
s3 := Sym(33)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27);
s4 := Sym(33)!(28,29);
s5 := Sym(33)!(30,31);
s6 := Sym(33)!(32,33);
poly := sub<Sym(33)|s0,s1,s2,s3,s4,s5,s6>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5,s6> := Group< s0,s1,s2,s3,s4,s5,s6 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s6*s6, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s0*s6*s0*s6, 
s1*s6*s1*s6, s2*s6*s2*s6, s3*s6*s3*s6, 
s4*s6*s4*s6, s5*s6*s5*s6, s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 >; 
 

to this polytope