Questions?
See the FAQ
or other info.

Polytope of Type {2,2,6,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,6,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,47915)
Rank : 6
Schlafli Type : {2,2,6,6,6}
Number of vertices, edges, etc : 2, 2, 6, 18, 18, 6
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,2,6,6}*576a, {2,2,6,2,6}*576, {2,2,6,6,2}*576a
   6-fold quotients : {2,2,3,2,6}*288, {2,2,6,2,3}*288
   9-fold quotients : {2,2,2,2,6}*192, {2,2,2,6,2}*192, {2,2,6,2,2}*192
   12-fold quotients : {2,2,3,2,3}*144
   18-fold quotients : {2,2,2,2,3}*96, {2,2,2,3,2}*96, {2,2,3,2,2}*96
   27-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(30,31)(33,34)
(36,37)(39,40)(42,43)(45,46)(48,49)(51,52)(54,55)(57,58);;
s3 := ( 5, 6)( 8,12)( 9,11)(10,13)(14,15)(17,21)(18,20)(19,22)(23,24)(26,30)
(27,29)(28,31)(32,33)(35,39)(36,38)(37,40)(41,42)(44,48)(45,47)(46,49)(50,51)
(53,57)(54,56)(55,58);;
s4 := ( 5, 8)( 6, 9)( 7,10)(14,26)(15,27)(16,28)(17,23)(18,24)(19,25)(20,29)
(21,30)(22,31)(32,35)(33,36)(34,37)(41,53)(42,54)(43,55)(44,50)(45,51)(46,52)
(47,56)(48,57)(49,58);;
s5 := ( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)(11,47)(12,48)(13,49)(14,32)
(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,50)(24,51)(25,52)
(26,53)(27,54)(28,55)(29,56)(30,57)(31,58);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s5*s4*s3*s4*s5*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(58)!(1,2);
s1 := Sym(58)!(3,4);
s2 := Sym(58)!( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(30,31)
(33,34)(36,37)(39,40)(42,43)(45,46)(48,49)(51,52)(54,55)(57,58);
s3 := Sym(58)!( 5, 6)( 8,12)( 9,11)(10,13)(14,15)(17,21)(18,20)(19,22)(23,24)
(26,30)(27,29)(28,31)(32,33)(35,39)(36,38)(37,40)(41,42)(44,48)(45,47)(46,49)
(50,51)(53,57)(54,56)(55,58);
s4 := Sym(58)!( 5, 8)( 6, 9)( 7,10)(14,26)(15,27)(16,28)(17,23)(18,24)(19,25)
(20,29)(21,30)(22,31)(32,35)(33,36)(34,37)(41,53)(42,54)(43,55)(44,50)(45,51)
(46,52)(47,56)(48,57)(49,58);
s5 := Sym(58)!( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)(11,47)(12,48)(13,49)
(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,50)(24,51)
(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58);
poly := sub<Sym(58)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s5*s4*s3*s4*s5*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope