Questions?
See the FAQ
or other info.

Polytope of Type {2,2,6,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,6,6}*1728g
if this polytope has a name.
Group : SmallGroup(1728,47915)
Rank : 6
Schlafli Type : {2,2,6,6,6}
Number of vertices, edges, etc : 2, 2, 6, 18, 18, 6
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,3,6,6}*864b
   3-fold quotients : {2,2,6,2,6}*576, {2,2,6,6,2}*576c
   6-fold quotients : {2,2,3,2,6}*288, {2,2,3,6,2}*288, {2,2,6,2,3}*288
   9-fold quotients : {2,2,2,2,6}*192, {2,2,6,2,2}*192
   12-fold quotients : {2,2,3,2,3}*144
   18-fold quotients : {2,2,2,2,3}*96, {2,2,3,2,2}*96
   27-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8,11)( 9,13)(10,12)(15,16)(17,20)(18,22)(19,21)(24,25)(26,29)
(27,31)(28,30)(33,34)(35,38)(36,40)(37,39)(42,43)(44,47)(45,49)(46,48)(51,52)
(53,56)(54,58)(55,57);;
s3 := ( 5,36)( 6,35)( 7,37)( 8,33)( 9,32)(10,34)(11,39)(12,38)(13,40)(14,45)
(15,44)(16,46)(17,42)(18,41)(19,43)(20,48)(21,47)(22,49)(23,54)(24,53)(25,55)
(26,51)(27,50)(28,52)(29,57)(30,56)(31,58);;
s4 := ( 6, 7)( 9,10)(12,13)(14,23)(15,25)(16,24)(17,26)(18,28)(19,27)(20,29)
(21,31)(22,30)(33,34)(36,37)(39,40)(41,50)(42,52)(43,51)(44,53)(45,55)(46,54)
(47,56)(48,58)(49,57);;
s5 := ( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(10,19)(11,20)(12,21)(13,22)(32,41)
(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s3*s4*s5*s4*s3*s4*s5*s4, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(58)!(1,2);
s1 := Sym(58)!(3,4);
s2 := Sym(58)!( 6, 7)( 8,11)( 9,13)(10,12)(15,16)(17,20)(18,22)(19,21)(24,25)
(26,29)(27,31)(28,30)(33,34)(35,38)(36,40)(37,39)(42,43)(44,47)(45,49)(46,48)
(51,52)(53,56)(54,58)(55,57);
s3 := Sym(58)!( 5,36)( 6,35)( 7,37)( 8,33)( 9,32)(10,34)(11,39)(12,38)(13,40)
(14,45)(15,44)(16,46)(17,42)(18,41)(19,43)(20,48)(21,47)(22,49)(23,54)(24,53)
(25,55)(26,51)(27,50)(28,52)(29,57)(30,56)(31,58);
s4 := Sym(58)!( 6, 7)( 9,10)(12,13)(14,23)(15,25)(16,24)(17,26)(18,28)(19,27)
(20,29)(21,31)(22,30)(33,34)(36,37)(39,40)(41,50)(42,52)(43,51)(44,53)(45,55)
(46,54)(47,56)(48,58)(49,57);
s5 := Sym(58)!( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(10,19)(11,20)(12,21)(13,22)
(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49);
poly := sub<Sym(58)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s3*s4*s5*s4*s3*s4*s5*s4, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope