Questions?
See the FAQ
or other info.

Polytope of Type {2,438}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,438}*1752
if this polytope has a name.
Group : SmallGroup(1752,63)
Rank : 3
Schlafli Type : {2,438}
Number of vertices, edges, etc : 2, 438, 438
Order of s0s1s2 : 438
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,219}*876
   3-fold quotients : {2,146}*584
   6-fold quotients : {2,73}*292
   73-fold quotients : {2,6}*24
   146-fold quotients : {2,3}*12
   219-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 75)(  5, 74)(  6, 73)(  7, 72)(  8, 71)(  9, 70)( 10, 69)( 11, 68)
( 12, 67)( 13, 66)( 14, 65)( 15, 64)( 16, 63)( 17, 62)( 18, 61)( 19, 60)
( 20, 59)( 21, 58)( 22, 57)( 23, 56)( 24, 55)( 25, 54)( 26, 53)( 27, 52)
( 28, 51)( 29, 50)( 30, 49)( 31, 48)( 32, 47)( 33, 46)( 34, 45)( 35, 44)
( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 76,149)( 77,221)( 78,220)( 79,219)
( 80,218)( 81,217)( 82,216)( 83,215)( 84,214)( 85,213)( 86,212)( 87,211)
( 88,210)( 89,209)( 90,208)( 91,207)( 92,206)( 93,205)( 94,204)( 95,203)
( 96,202)( 97,201)( 98,200)( 99,199)(100,198)(101,197)(102,196)(103,195)
(104,194)(105,193)(106,192)(107,191)(108,190)(109,189)(110,188)(111,187)
(112,186)(113,185)(114,184)(115,183)(116,182)(117,181)(118,180)(119,179)
(120,178)(121,177)(122,176)(123,175)(124,174)(125,173)(126,172)(127,171)
(128,170)(129,169)(130,168)(131,167)(132,166)(133,165)(134,164)(135,163)
(136,162)(137,161)(138,160)(139,159)(140,158)(141,157)(142,156)(143,155)
(144,154)(145,153)(146,152)(147,151)(148,150)(223,294)(224,293)(225,292)
(226,291)(227,290)(228,289)(229,288)(230,287)(231,286)(232,285)(233,284)
(234,283)(235,282)(236,281)(237,280)(238,279)(239,278)(240,277)(241,276)
(242,275)(243,274)(244,273)(245,272)(246,271)(247,270)(248,269)(249,268)
(250,267)(251,266)(252,265)(253,264)(254,263)(255,262)(256,261)(257,260)
(258,259)(295,368)(296,440)(297,439)(298,438)(299,437)(300,436)(301,435)
(302,434)(303,433)(304,432)(305,431)(306,430)(307,429)(308,428)(309,427)
(310,426)(311,425)(312,424)(313,423)(314,422)(315,421)(316,420)(317,419)
(318,418)(319,417)(320,416)(321,415)(322,414)(323,413)(324,412)(325,411)
(326,410)(327,409)(328,408)(329,407)(330,406)(331,405)(332,404)(333,403)
(334,402)(335,401)(336,400)(337,399)(338,398)(339,397)(340,396)(341,395)
(342,394)(343,393)(344,392)(345,391)(346,390)(347,389)(348,388)(349,387)
(350,386)(351,385)(352,384)(353,383)(354,382)(355,381)(356,380)(357,379)
(358,378)(359,377)(360,376)(361,375)(362,374)(363,373)(364,372)(365,371)
(366,370)(367,369);;
s2 := (  3,296)(  4,295)(  5,367)(  6,366)(  7,365)(  8,364)(  9,363)( 10,362)
( 11,361)( 12,360)( 13,359)( 14,358)( 15,357)( 16,356)( 17,355)( 18,354)
( 19,353)( 20,352)( 21,351)( 22,350)( 23,349)( 24,348)( 25,347)( 26,346)
( 27,345)( 28,344)( 29,343)( 30,342)( 31,341)( 32,340)( 33,339)( 34,338)
( 35,337)( 36,336)( 37,335)( 38,334)( 39,333)( 40,332)( 41,331)( 42,330)
( 43,329)( 44,328)( 45,327)( 46,326)( 47,325)( 48,324)( 49,323)( 50,322)
( 51,321)( 52,320)( 53,319)( 54,318)( 55,317)( 56,316)( 57,315)( 58,314)
( 59,313)( 60,312)( 61,311)( 62,310)( 63,309)( 64,308)( 65,307)( 66,306)
( 67,305)( 68,304)( 69,303)( 70,302)( 71,301)( 72,300)( 73,299)( 74,298)
( 75,297)( 76,223)( 77,222)( 78,294)( 79,293)( 80,292)( 81,291)( 82,290)
( 83,289)( 84,288)( 85,287)( 86,286)( 87,285)( 88,284)( 89,283)( 90,282)
( 91,281)( 92,280)( 93,279)( 94,278)( 95,277)( 96,276)( 97,275)( 98,274)
( 99,273)(100,272)(101,271)(102,270)(103,269)(104,268)(105,267)(106,266)
(107,265)(108,264)(109,263)(110,262)(111,261)(112,260)(113,259)(114,258)
(115,257)(116,256)(117,255)(118,254)(119,253)(120,252)(121,251)(122,250)
(123,249)(124,248)(125,247)(126,246)(127,245)(128,244)(129,243)(130,242)
(131,241)(132,240)(133,239)(134,238)(135,237)(136,236)(137,235)(138,234)
(139,233)(140,232)(141,231)(142,230)(143,229)(144,228)(145,227)(146,226)
(147,225)(148,224)(149,369)(150,368)(151,440)(152,439)(153,438)(154,437)
(155,436)(156,435)(157,434)(158,433)(159,432)(160,431)(161,430)(162,429)
(163,428)(164,427)(165,426)(166,425)(167,424)(168,423)(169,422)(170,421)
(171,420)(172,419)(173,418)(174,417)(175,416)(176,415)(177,414)(178,413)
(179,412)(180,411)(181,410)(182,409)(183,408)(184,407)(185,406)(186,405)
(187,404)(188,403)(189,402)(190,401)(191,400)(192,399)(193,398)(194,397)
(195,396)(196,395)(197,394)(198,393)(199,392)(200,391)(201,390)(202,389)
(203,388)(204,387)(205,386)(206,385)(207,384)(208,383)(209,382)(210,381)
(211,380)(212,379)(213,378)(214,377)(215,376)(216,375)(217,374)(218,373)
(219,372)(220,371)(221,370);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(440)!(1,2);
s1 := Sym(440)!(  4, 75)(  5, 74)(  6, 73)(  7, 72)(  8, 71)(  9, 70)( 10, 69)
( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 64)( 16, 63)( 17, 62)( 18, 61)
( 19, 60)( 20, 59)( 21, 58)( 22, 57)( 23, 56)( 24, 55)( 25, 54)( 26, 53)
( 27, 52)( 28, 51)( 29, 50)( 30, 49)( 31, 48)( 32, 47)( 33, 46)( 34, 45)
( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 76,149)( 77,221)( 78,220)
( 79,219)( 80,218)( 81,217)( 82,216)( 83,215)( 84,214)( 85,213)( 86,212)
( 87,211)( 88,210)( 89,209)( 90,208)( 91,207)( 92,206)( 93,205)( 94,204)
( 95,203)( 96,202)( 97,201)( 98,200)( 99,199)(100,198)(101,197)(102,196)
(103,195)(104,194)(105,193)(106,192)(107,191)(108,190)(109,189)(110,188)
(111,187)(112,186)(113,185)(114,184)(115,183)(116,182)(117,181)(118,180)
(119,179)(120,178)(121,177)(122,176)(123,175)(124,174)(125,173)(126,172)
(127,171)(128,170)(129,169)(130,168)(131,167)(132,166)(133,165)(134,164)
(135,163)(136,162)(137,161)(138,160)(139,159)(140,158)(141,157)(142,156)
(143,155)(144,154)(145,153)(146,152)(147,151)(148,150)(223,294)(224,293)
(225,292)(226,291)(227,290)(228,289)(229,288)(230,287)(231,286)(232,285)
(233,284)(234,283)(235,282)(236,281)(237,280)(238,279)(239,278)(240,277)
(241,276)(242,275)(243,274)(244,273)(245,272)(246,271)(247,270)(248,269)
(249,268)(250,267)(251,266)(252,265)(253,264)(254,263)(255,262)(256,261)
(257,260)(258,259)(295,368)(296,440)(297,439)(298,438)(299,437)(300,436)
(301,435)(302,434)(303,433)(304,432)(305,431)(306,430)(307,429)(308,428)
(309,427)(310,426)(311,425)(312,424)(313,423)(314,422)(315,421)(316,420)
(317,419)(318,418)(319,417)(320,416)(321,415)(322,414)(323,413)(324,412)
(325,411)(326,410)(327,409)(328,408)(329,407)(330,406)(331,405)(332,404)
(333,403)(334,402)(335,401)(336,400)(337,399)(338,398)(339,397)(340,396)
(341,395)(342,394)(343,393)(344,392)(345,391)(346,390)(347,389)(348,388)
(349,387)(350,386)(351,385)(352,384)(353,383)(354,382)(355,381)(356,380)
(357,379)(358,378)(359,377)(360,376)(361,375)(362,374)(363,373)(364,372)
(365,371)(366,370)(367,369);
s2 := Sym(440)!(  3,296)(  4,295)(  5,367)(  6,366)(  7,365)(  8,364)(  9,363)
( 10,362)( 11,361)( 12,360)( 13,359)( 14,358)( 15,357)( 16,356)( 17,355)
( 18,354)( 19,353)( 20,352)( 21,351)( 22,350)( 23,349)( 24,348)( 25,347)
( 26,346)( 27,345)( 28,344)( 29,343)( 30,342)( 31,341)( 32,340)( 33,339)
( 34,338)( 35,337)( 36,336)( 37,335)( 38,334)( 39,333)( 40,332)( 41,331)
( 42,330)( 43,329)( 44,328)( 45,327)( 46,326)( 47,325)( 48,324)( 49,323)
( 50,322)( 51,321)( 52,320)( 53,319)( 54,318)( 55,317)( 56,316)( 57,315)
( 58,314)( 59,313)( 60,312)( 61,311)( 62,310)( 63,309)( 64,308)( 65,307)
( 66,306)( 67,305)( 68,304)( 69,303)( 70,302)( 71,301)( 72,300)( 73,299)
( 74,298)( 75,297)( 76,223)( 77,222)( 78,294)( 79,293)( 80,292)( 81,291)
( 82,290)( 83,289)( 84,288)( 85,287)( 86,286)( 87,285)( 88,284)( 89,283)
( 90,282)( 91,281)( 92,280)( 93,279)( 94,278)( 95,277)( 96,276)( 97,275)
( 98,274)( 99,273)(100,272)(101,271)(102,270)(103,269)(104,268)(105,267)
(106,266)(107,265)(108,264)(109,263)(110,262)(111,261)(112,260)(113,259)
(114,258)(115,257)(116,256)(117,255)(118,254)(119,253)(120,252)(121,251)
(122,250)(123,249)(124,248)(125,247)(126,246)(127,245)(128,244)(129,243)
(130,242)(131,241)(132,240)(133,239)(134,238)(135,237)(136,236)(137,235)
(138,234)(139,233)(140,232)(141,231)(142,230)(143,229)(144,228)(145,227)
(146,226)(147,225)(148,224)(149,369)(150,368)(151,440)(152,439)(153,438)
(154,437)(155,436)(156,435)(157,434)(158,433)(159,432)(160,431)(161,430)
(162,429)(163,428)(164,427)(165,426)(166,425)(167,424)(168,423)(169,422)
(170,421)(171,420)(172,419)(173,418)(174,417)(175,416)(176,415)(177,414)
(178,413)(179,412)(180,411)(181,410)(182,409)(183,408)(184,407)(185,406)
(186,405)(187,404)(188,403)(189,402)(190,401)(191,400)(192,399)(193,398)
(194,397)(195,396)(196,395)(197,394)(198,393)(199,392)(200,391)(201,390)
(202,389)(203,388)(204,387)(205,386)(206,385)(207,384)(208,383)(209,382)
(210,381)(211,380)(212,379)(213,378)(214,377)(215,376)(216,375)(217,374)
(218,373)(219,372)(220,371)(221,370);
poly := sub<Sym(440)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope