Questions?
See the FAQ
or other info.

Polytope of Type {11,2,40}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {11,2,40}*1760
if this polytope has a name.
Group : SmallGroup(1760,474)
Rank : 4
Schlafli Type : {11,2,40}
Number of vertices, edges, etc : 11, 11, 40, 40
Order of s0s1s2s3 : 440
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {11,2,20}*880
   4-fold quotients : {11,2,10}*440
   5-fold quotients : {11,2,8}*352
   8-fold quotients : {11,2,5}*220
   10-fold quotients : {11,2,4}*176
   20-fold quotients : {11,2,2}*88
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s2 := (13,14)(15,16)(17,20)(18,22)(19,21)(23,24)(25,30)(26,32)(27,31)(28,34)
(29,33)(36,41)(37,40)(38,43)(39,42)(44,45)(46,49)(47,48)(50,51);;
s3 := (12,18)(13,15)(14,26)(16,28)(17,21)(19,23)(20,36)(22,38)(24,29)(25,31)
(27,33)(30,44)(32,46)(34,39)(35,40)(37,42)(41,50)(43,47)(45,48)(49,51);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(51)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);
s1 := Sym(51)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);
s2 := Sym(51)!(13,14)(15,16)(17,20)(18,22)(19,21)(23,24)(25,30)(26,32)(27,31)
(28,34)(29,33)(36,41)(37,40)(38,43)(39,42)(44,45)(46,49)(47,48)(50,51);
s3 := Sym(51)!(12,18)(13,15)(14,26)(16,28)(17,21)(19,23)(20,36)(22,38)(24,29)
(25,31)(27,33)(30,44)(32,46)(34,39)(35,40)(37,42)(41,50)(43,47)(45,48)(49,51);
poly := sub<Sym(51)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope