Questions?
See the FAQ
or other info.

Polytope of Type {2,2,14,16}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,14,16}*1792
if this polytope has a name.
Group : SmallGroup(1792,1076041)
Rank : 5
Schlafli Type : {2,2,14,16}
Number of vertices, edges, etc : 2, 2, 14, 112, 16
Order of s0s1s2s3s4 : 112
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,14,8}*896
   4-fold quotients : {2,2,14,4}*448
   7-fold quotients : {2,2,2,16}*256
   8-fold quotients : {2,2,14,2}*224
   14-fold quotients : {2,2,2,8}*128
   16-fold quotients : {2,2,7,2}*112
   28-fold quotients : {2,2,2,4}*64
   56-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  6, 11)(  7, 10)(  8,  9)( 13, 18)( 14, 17)( 15, 16)( 20, 25)( 21, 24)
( 22, 23)( 27, 32)( 28, 31)( 29, 30)( 34, 39)( 35, 38)( 36, 37)( 41, 46)
( 42, 45)( 43, 44)( 48, 53)( 49, 52)( 50, 51)( 55, 60)( 56, 59)( 57, 58)
( 62, 67)( 63, 66)( 64, 65)( 69, 74)( 70, 73)( 71, 72)( 76, 81)( 77, 80)
( 78, 79)( 83, 88)( 84, 87)( 85, 86)( 90, 95)( 91, 94)( 92, 93)( 97,102)
( 98,101)( 99,100)(104,109)(105,108)(106,107)(111,116)(112,115)(113,114);;
s3 := (  5,  6)(  7, 11)(  8, 10)( 12, 13)( 14, 18)( 15, 17)( 19, 27)( 20, 26)
( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 33, 48)( 34, 47)( 35, 53)
( 36, 52)( 37, 51)( 38, 50)( 39, 49)( 40, 55)( 41, 54)( 42, 60)( 43, 59)
( 44, 58)( 45, 57)( 46, 56)( 61, 90)( 62, 89)( 63, 95)( 64, 94)( 65, 93)
( 66, 92)( 67, 91)( 68, 97)( 69, 96)( 70,102)( 71,101)( 72,100)( 73, 99)
( 74, 98)( 75,111)( 76,110)( 77,116)( 78,115)( 79,114)( 80,113)( 81,112)
( 82,104)( 83,103)( 84,109)( 85,108)( 86,107)( 87,106)( 88,105);;
s4 := (  5, 61)(  6, 62)(  7, 63)(  8, 64)(  9, 65)( 10, 66)( 11, 67)( 12, 68)
( 13, 69)( 14, 70)( 15, 71)( 16, 72)( 17, 73)( 18, 74)( 19, 82)( 20, 83)
( 21, 84)( 22, 85)( 23, 86)( 24, 87)( 25, 88)( 26, 75)( 27, 76)( 28, 77)
( 29, 78)( 30, 79)( 31, 80)( 32, 81)( 33,103)( 34,104)( 35,105)( 36,106)
( 37,107)( 38,108)( 39,109)( 40,110)( 41,111)( 42,112)( 43,113)( 44,114)
( 45,115)( 46,116)( 47, 89)( 48, 90)( 49, 91)( 50, 92)( 51, 93)( 52, 94)
( 53, 95)( 54, 96)( 55, 97)( 56, 98)( 57, 99)( 58,100)( 59,101)( 60,102);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(116)!(1,2);
s1 := Sym(116)!(3,4);
s2 := Sym(116)!(  6, 11)(  7, 10)(  8,  9)( 13, 18)( 14, 17)( 15, 16)( 20, 25)
( 21, 24)( 22, 23)( 27, 32)( 28, 31)( 29, 30)( 34, 39)( 35, 38)( 36, 37)
( 41, 46)( 42, 45)( 43, 44)( 48, 53)( 49, 52)( 50, 51)( 55, 60)( 56, 59)
( 57, 58)( 62, 67)( 63, 66)( 64, 65)( 69, 74)( 70, 73)( 71, 72)( 76, 81)
( 77, 80)( 78, 79)( 83, 88)( 84, 87)( 85, 86)( 90, 95)( 91, 94)( 92, 93)
( 97,102)( 98,101)( 99,100)(104,109)(105,108)(106,107)(111,116)(112,115)
(113,114);
s3 := Sym(116)!(  5,  6)(  7, 11)(  8, 10)( 12, 13)( 14, 18)( 15, 17)( 19, 27)
( 20, 26)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 33, 48)( 34, 47)
( 35, 53)( 36, 52)( 37, 51)( 38, 50)( 39, 49)( 40, 55)( 41, 54)( 42, 60)
( 43, 59)( 44, 58)( 45, 57)( 46, 56)( 61, 90)( 62, 89)( 63, 95)( 64, 94)
( 65, 93)( 66, 92)( 67, 91)( 68, 97)( 69, 96)( 70,102)( 71,101)( 72,100)
( 73, 99)( 74, 98)( 75,111)( 76,110)( 77,116)( 78,115)( 79,114)( 80,113)
( 81,112)( 82,104)( 83,103)( 84,109)( 85,108)( 86,107)( 87,106)( 88,105);
s4 := Sym(116)!(  5, 61)(  6, 62)(  7, 63)(  8, 64)(  9, 65)( 10, 66)( 11, 67)
( 12, 68)( 13, 69)( 14, 70)( 15, 71)( 16, 72)( 17, 73)( 18, 74)( 19, 82)
( 20, 83)( 21, 84)( 22, 85)( 23, 86)( 24, 87)( 25, 88)( 26, 75)( 27, 76)
( 28, 77)( 29, 78)( 30, 79)( 31, 80)( 32, 81)( 33,103)( 34,104)( 35,105)
( 36,106)( 37,107)( 38,108)( 39,109)( 40,110)( 41,111)( 42,112)( 43,113)
( 44,114)( 45,115)( 46,116)( 47, 89)( 48, 90)( 49, 91)( 50, 92)( 51, 93)
( 52, 94)( 53, 95)( 54, 96)( 55, 97)( 56, 98)( 57, 99)( 58,100)( 59,101)
( 60,102);
poly := sub<Sym(116)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope