Questions?
See the FAQ
or other info.

Polytope of Type {2,2,16,14}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,16,14}*1792
if this polytope has a name.
Group : SmallGroup(1792,1076041)
Rank : 5
Schlafli Type : {2,2,16,14}
Number of vertices, edges, etc : 2, 2, 16, 112, 14
Order of s0s1s2s3s4 : 112
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,8,14}*896
   4-fold quotients : {2,2,4,14}*448
   7-fold quotients : {2,2,16,2}*256
   8-fold quotients : {2,2,2,14}*224
   14-fold quotients : {2,2,8,2}*128
   16-fold quotients : {2,2,2,7}*112
   28-fold quotients : {2,2,4,2}*64
   56-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 19, 26)( 20, 27)( 21, 28)( 22, 29)( 23, 30)( 24, 31)( 25, 32)( 33, 47)
( 34, 48)( 35, 49)( 36, 50)( 37, 51)( 38, 52)( 39, 53)( 40, 54)( 41, 55)
( 42, 56)( 43, 57)( 44, 58)( 45, 59)( 46, 60)( 61, 89)( 62, 90)( 63, 91)
( 64, 92)( 65, 93)( 66, 94)( 67, 95)( 68, 96)( 69, 97)( 70, 98)( 71, 99)
( 72,100)( 73,101)( 74,102)( 75,110)( 76,111)( 77,112)( 78,113)( 79,114)
( 80,115)( 81,116)( 82,103)( 83,104)( 84,105)( 85,106)( 86,107)( 87,108)
( 88,109);;
s3 := (  5, 61)(  6, 67)(  7, 66)(  8, 65)(  9, 64)( 10, 63)( 11, 62)( 12, 68)
( 13, 74)( 14, 73)( 15, 72)( 16, 71)( 17, 70)( 18, 69)( 19, 82)( 20, 88)
( 21, 87)( 22, 86)( 23, 85)( 24, 84)( 25, 83)( 26, 75)( 27, 81)( 28, 80)
( 29, 79)( 30, 78)( 31, 77)( 32, 76)( 33,103)( 34,109)( 35,108)( 36,107)
( 37,106)( 38,105)( 39,104)( 40,110)( 41,116)( 42,115)( 43,114)( 44,113)
( 45,112)( 46,111)( 47, 89)( 48, 95)( 49, 94)( 50, 93)( 51, 92)( 52, 91)
( 53, 90)( 54, 96)( 55,102)( 56,101)( 57,100)( 58, 99)( 59, 98)( 60, 97);;
s4 := (  5,  6)(  7, 11)(  8, 10)( 12, 13)( 14, 18)( 15, 17)( 19, 20)( 21, 25)
( 22, 24)( 26, 27)( 28, 32)( 29, 31)( 33, 34)( 35, 39)( 36, 38)( 40, 41)
( 42, 46)( 43, 45)( 47, 48)( 49, 53)( 50, 52)( 54, 55)( 56, 60)( 57, 59)
( 61, 62)( 63, 67)( 64, 66)( 68, 69)( 70, 74)( 71, 73)( 75, 76)( 77, 81)
( 78, 80)( 82, 83)( 84, 88)( 85, 87)( 89, 90)( 91, 95)( 92, 94)( 96, 97)
( 98,102)( 99,101)(103,104)(105,109)(106,108)(110,111)(112,116)(113,115);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(116)!(1,2);
s1 := Sym(116)!(3,4);
s2 := Sym(116)!( 19, 26)( 20, 27)( 21, 28)( 22, 29)( 23, 30)( 24, 31)( 25, 32)
( 33, 47)( 34, 48)( 35, 49)( 36, 50)( 37, 51)( 38, 52)( 39, 53)( 40, 54)
( 41, 55)( 42, 56)( 43, 57)( 44, 58)( 45, 59)( 46, 60)( 61, 89)( 62, 90)
( 63, 91)( 64, 92)( 65, 93)( 66, 94)( 67, 95)( 68, 96)( 69, 97)( 70, 98)
( 71, 99)( 72,100)( 73,101)( 74,102)( 75,110)( 76,111)( 77,112)( 78,113)
( 79,114)( 80,115)( 81,116)( 82,103)( 83,104)( 84,105)( 85,106)( 86,107)
( 87,108)( 88,109);
s3 := Sym(116)!(  5, 61)(  6, 67)(  7, 66)(  8, 65)(  9, 64)( 10, 63)( 11, 62)
( 12, 68)( 13, 74)( 14, 73)( 15, 72)( 16, 71)( 17, 70)( 18, 69)( 19, 82)
( 20, 88)( 21, 87)( 22, 86)( 23, 85)( 24, 84)( 25, 83)( 26, 75)( 27, 81)
( 28, 80)( 29, 79)( 30, 78)( 31, 77)( 32, 76)( 33,103)( 34,109)( 35,108)
( 36,107)( 37,106)( 38,105)( 39,104)( 40,110)( 41,116)( 42,115)( 43,114)
( 44,113)( 45,112)( 46,111)( 47, 89)( 48, 95)( 49, 94)( 50, 93)( 51, 92)
( 52, 91)( 53, 90)( 54, 96)( 55,102)( 56,101)( 57,100)( 58, 99)( 59, 98)
( 60, 97);
s4 := Sym(116)!(  5,  6)(  7, 11)(  8, 10)( 12, 13)( 14, 18)( 15, 17)( 19, 20)
( 21, 25)( 22, 24)( 26, 27)( 28, 32)( 29, 31)( 33, 34)( 35, 39)( 36, 38)
( 40, 41)( 42, 46)( 43, 45)( 47, 48)( 49, 53)( 50, 52)( 54, 55)( 56, 60)
( 57, 59)( 61, 62)( 63, 67)( 64, 66)( 68, 69)( 70, 74)( 71, 73)( 75, 76)
( 77, 81)( 78, 80)( 82, 83)( 84, 88)( 85, 87)( 89, 90)( 91, 95)( 92, 94)
( 96, 97)( 98,102)( 99,101)(103,104)(105,109)(106,108)(110,111)(112,116)
(113,115);
poly := sub<Sym(116)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope