Questions?
See the FAQ
or other info.

Polytope of Type {2,112,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,112,4}*1792b
if this polytope has a name.
Group : SmallGroup(1792,323454)
Rank : 4
Schlafli Type : {2,112,4}
Number of vertices, edges, etc : 2, 112, 224, 4
Order of s0s1s2s3 : 112
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,56,4}*896a
   4-fold quotients : {2,28,4}*448, {2,56,2}*448
   7-fold quotients : {2,16,4}*256b
   8-fold quotients : {2,28,2}*224, {2,14,4}*224
   14-fold quotients : {2,8,4}*128a
   16-fold quotients : {2,14,2}*112
   28-fold quotients : {2,4,4}*64, {2,8,2}*64
   32-fold quotients : {2,7,2}*56
   56-fold quotients : {2,2,4}*32, {2,4,2}*32
   112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3,227)(  4,233)(  5,232)(  6,231)(  7,230)(  8,229)(  9,228)( 10,234)
( 11,240)( 12,239)( 13,238)( 14,237)( 15,236)( 16,235)( 17,248)( 18,254)
( 19,253)( 20,252)( 21,251)( 22,250)( 23,249)( 24,241)( 25,247)( 26,246)
( 27,245)( 28,244)( 29,243)( 30,242)( 31,262)( 32,268)( 33,267)( 34,266)
( 35,265)( 36,264)( 37,263)( 38,255)( 39,261)( 40,260)( 41,259)( 42,258)
( 43,257)( 44,256)( 45,269)( 46,275)( 47,274)( 48,273)( 49,272)( 50,271)
( 51,270)( 52,276)( 53,282)( 54,281)( 55,280)( 56,279)( 57,278)( 58,277)
( 59,297)( 60,303)( 61,302)( 62,301)( 63,300)( 64,299)( 65,298)( 66,304)
( 67,310)( 68,309)( 69,308)( 70,307)( 71,306)( 72,305)( 73,283)( 74,289)
( 75,288)( 76,287)( 77,286)( 78,285)( 79,284)( 80,290)( 81,296)( 82,295)
( 83,294)( 84,293)( 85,292)( 86,291)( 87,332)( 88,338)( 89,337)( 90,336)
( 91,335)( 92,334)( 93,333)( 94,325)( 95,331)( 96,330)( 97,329)( 98,328)
( 99,327)(100,326)(101,318)(102,324)(103,323)(104,322)(105,321)(106,320)
(107,319)(108,311)(109,317)(110,316)(111,315)(112,314)(113,313)(114,312)
(115,339)(116,345)(117,344)(118,343)(119,342)(120,341)(121,340)(122,346)
(123,352)(124,351)(125,350)(126,349)(127,348)(128,347)(129,360)(130,366)
(131,365)(132,364)(133,363)(134,362)(135,361)(136,353)(137,359)(138,358)
(139,357)(140,356)(141,355)(142,354)(143,374)(144,380)(145,379)(146,378)
(147,377)(148,376)(149,375)(150,367)(151,373)(152,372)(153,371)(154,370)
(155,369)(156,368)(157,381)(158,387)(159,386)(160,385)(161,384)(162,383)
(163,382)(164,388)(165,394)(166,393)(167,392)(168,391)(169,390)(170,389)
(171,409)(172,415)(173,414)(174,413)(175,412)(176,411)(177,410)(178,416)
(179,422)(180,421)(181,420)(182,419)(183,418)(184,417)(185,395)(186,401)
(187,400)(188,399)(189,398)(190,397)(191,396)(192,402)(193,408)(194,407)
(195,406)(196,405)(197,404)(198,403)(199,444)(200,450)(201,449)(202,448)
(203,447)(204,446)(205,445)(206,437)(207,443)(208,442)(209,441)(210,440)
(211,439)(212,438)(213,430)(214,436)(215,435)(216,434)(217,433)(218,432)
(219,431)(220,423)(221,429)(222,428)(223,427)(224,426)(225,425)(226,424);;
s2 := (  3,  4)(  5,  9)(  6,  8)( 10, 11)( 12, 16)( 13, 15)( 17, 25)( 18, 24)
( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 31, 32)( 33, 37)( 34, 36)
( 38, 39)( 40, 44)( 41, 43)( 45, 53)( 46, 52)( 47, 58)( 48, 57)( 49, 56)
( 50, 55)( 51, 54)( 59, 74)( 60, 73)( 61, 79)( 62, 78)( 63, 77)( 64, 76)
( 65, 75)( 66, 81)( 67, 80)( 68, 86)( 69, 85)( 70, 84)( 71, 83)( 72, 82)
( 87,102)( 88,101)( 89,107)( 90,106)( 91,105)( 92,104)( 93,103)( 94,109)
( 95,108)( 96,114)( 97,113)( 98,112)( 99,111)(100,110)(115,144)(116,143)
(117,149)(118,148)(119,147)(120,146)(121,145)(122,151)(123,150)(124,156)
(125,155)(126,154)(127,153)(128,152)(129,165)(130,164)(131,170)(132,169)
(133,168)(134,167)(135,166)(136,158)(137,157)(138,163)(139,162)(140,161)
(141,160)(142,159)(171,214)(172,213)(173,219)(174,218)(175,217)(176,216)
(177,215)(178,221)(179,220)(180,226)(181,225)(182,224)(183,223)(184,222)
(185,200)(186,199)(187,205)(188,204)(189,203)(190,202)(191,201)(192,207)
(193,206)(194,212)(195,211)(196,210)(197,209)(198,208)(227,284)(228,283)
(229,289)(230,288)(231,287)(232,286)(233,285)(234,291)(235,290)(236,296)
(237,295)(238,294)(239,293)(240,292)(241,305)(242,304)(243,310)(244,309)
(245,308)(246,307)(247,306)(248,298)(249,297)(250,303)(251,302)(252,301)
(253,300)(254,299)(255,312)(256,311)(257,317)(258,316)(259,315)(260,314)
(261,313)(262,319)(263,318)(264,324)(265,323)(266,322)(267,321)(268,320)
(269,333)(270,332)(271,338)(272,337)(273,336)(274,335)(275,334)(276,326)
(277,325)(278,331)(279,330)(280,329)(281,328)(282,327)(339,431)(340,430)
(341,436)(342,435)(343,434)(344,433)(345,432)(346,424)(347,423)(348,429)
(349,428)(350,427)(351,426)(352,425)(353,438)(354,437)(355,443)(356,442)
(357,441)(358,440)(359,439)(360,445)(361,444)(362,450)(363,449)(364,448)
(365,447)(366,446)(367,403)(368,402)(369,408)(370,407)(371,406)(372,405)
(373,404)(374,396)(375,395)(376,401)(377,400)(378,399)(379,398)(380,397)
(381,410)(382,409)(383,415)(384,414)(385,413)(386,412)(387,411)(388,417)
(389,416)(390,422)(391,421)(392,420)(393,419)(394,418);;
s3 := (  3,115)(  4,116)(  5,117)(  6,118)(  7,119)(  8,120)(  9,121)( 10,122)
( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)( 16,128)( 17,129)( 18,130)
( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)( 24,136)( 25,137)( 26,138)
( 27,139)( 28,140)( 29,141)( 30,142)( 31,143)( 32,144)( 33,145)( 34,146)
( 35,147)( 36,148)( 37,149)( 38,150)( 39,151)( 40,152)( 41,153)( 42,154)
( 43,155)( 44,156)( 45,157)( 46,158)( 47,159)( 48,160)( 49,161)( 50,162)
( 51,163)( 52,164)( 53,165)( 54,166)( 55,167)( 56,168)( 57,169)( 58,170)
( 59,178)( 60,179)( 61,180)( 62,181)( 63,182)( 64,183)( 65,184)( 66,171)
( 67,172)( 68,173)( 69,174)( 70,175)( 71,176)( 72,177)( 73,192)( 74,193)
( 75,194)( 76,195)( 77,196)( 78,197)( 79,198)( 80,185)( 81,186)( 82,187)
( 83,188)( 84,189)( 85,190)( 86,191)( 87,206)( 88,207)( 89,208)( 90,209)
( 91,210)( 92,211)( 93,212)( 94,199)( 95,200)( 96,201)( 97,202)( 98,203)
( 99,204)(100,205)(101,220)(102,221)(103,222)(104,223)(105,224)(106,225)
(107,226)(108,213)(109,214)(110,215)(111,216)(112,217)(113,218)(114,219)
(227,339)(228,340)(229,341)(230,342)(231,343)(232,344)(233,345)(234,346)
(235,347)(236,348)(237,349)(238,350)(239,351)(240,352)(241,353)(242,354)
(243,355)(244,356)(245,357)(246,358)(247,359)(248,360)(249,361)(250,362)
(251,363)(252,364)(253,365)(254,366)(255,367)(256,368)(257,369)(258,370)
(259,371)(260,372)(261,373)(262,374)(263,375)(264,376)(265,377)(266,378)
(267,379)(268,380)(269,381)(270,382)(271,383)(272,384)(273,385)(274,386)
(275,387)(276,388)(277,389)(278,390)(279,391)(280,392)(281,393)(282,394)
(283,402)(284,403)(285,404)(286,405)(287,406)(288,407)(289,408)(290,395)
(291,396)(292,397)(293,398)(294,399)(295,400)(296,401)(297,416)(298,417)
(299,418)(300,419)(301,420)(302,421)(303,422)(304,409)(305,410)(306,411)
(307,412)(308,413)(309,414)(310,415)(311,430)(312,431)(313,432)(314,433)
(315,434)(316,435)(317,436)(318,423)(319,424)(320,425)(321,426)(322,427)
(323,428)(324,429)(325,444)(326,445)(327,446)(328,447)(329,448)(330,449)
(331,450)(332,437)(333,438)(334,439)(335,440)(336,441)(337,442)(338,443);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(450)!(1,2);
s1 := Sym(450)!(  3,227)(  4,233)(  5,232)(  6,231)(  7,230)(  8,229)(  9,228)
( 10,234)( 11,240)( 12,239)( 13,238)( 14,237)( 15,236)( 16,235)( 17,248)
( 18,254)( 19,253)( 20,252)( 21,251)( 22,250)( 23,249)( 24,241)( 25,247)
( 26,246)( 27,245)( 28,244)( 29,243)( 30,242)( 31,262)( 32,268)( 33,267)
( 34,266)( 35,265)( 36,264)( 37,263)( 38,255)( 39,261)( 40,260)( 41,259)
( 42,258)( 43,257)( 44,256)( 45,269)( 46,275)( 47,274)( 48,273)( 49,272)
( 50,271)( 51,270)( 52,276)( 53,282)( 54,281)( 55,280)( 56,279)( 57,278)
( 58,277)( 59,297)( 60,303)( 61,302)( 62,301)( 63,300)( 64,299)( 65,298)
( 66,304)( 67,310)( 68,309)( 69,308)( 70,307)( 71,306)( 72,305)( 73,283)
( 74,289)( 75,288)( 76,287)( 77,286)( 78,285)( 79,284)( 80,290)( 81,296)
( 82,295)( 83,294)( 84,293)( 85,292)( 86,291)( 87,332)( 88,338)( 89,337)
( 90,336)( 91,335)( 92,334)( 93,333)( 94,325)( 95,331)( 96,330)( 97,329)
( 98,328)( 99,327)(100,326)(101,318)(102,324)(103,323)(104,322)(105,321)
(106,320)(107,319)(108,311)(109,317)(110,316)(111,315)(112,314)(113,313)
(114,312)(115,339)(116,345)(117,344)(118,343)(119,342)(120,341)(121,340)
(122,346)(123,352)(124,351)(125,350)(126,349)(127,348)(128,347)(129,360)
(130,366)(131,365)(132,364)(133,363)(134,362)(135,361)(136,353)(137,359)
(138,358)(139,357)(140,356)(141,355)(142,354)(143,374)(144,380)(145,379)
(146,378)(147,377)(148,376)(149,375)(150,367)(151,373)(152,372)(153,371)
(154,370)(155,369)(156,368)(157,381)(158,387)(159,386)(160,385)(161,384)
(162,383)(163,382)(164,388)(165,394)(166,393)(167,392)(168,391)(169,390)
(170,389)(171,409)(172,415)(173,414)(174,413)(175,412)(176,411)(177,410)
(178,416)(179,422)(180,421)(181,420)(182,419)(183,418)(184,417)(185,395)
(186,401)(187,400)(188,399)(189,398)(190,397)(191,396)(192,402)(193,408)
(194,407)(195,406)(196,405)(197,404)(198,403)(199,444)(200,450)(201,449)
(202,448)(203,447)(204,446)(205,445)(206,437)(207,443)(208,442)(209,441)
(210,440)(211,439)(212,438)(213,430)(214,436)(215,435)(216,434)(217,433)
(218,432)(219,431)(220,423)(221,429)(222,428)(223,427)(224,426)(225,425)
(226,424);
s2 := Sym(450)!(  3,  4)(  5,  9)(  6,  8)( 10, 11)( 12, 16)( 13, 15)( 17, 25)
( 18, 24)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 31, 32)( 33, 37)
( 34, 36)( 38, 39)( 40, 44)( 41, 43)( 45, 53)( 46, 52)( 47, 58)( 48, 57)
( 49, 56)( 50, 55)( 51, 54)( 59, 74)( 60, 73)( 61, 79)( 62, 78)( 63, 77)
( 64, 76)( 65, 75)( 66, 81)( 67, 80)( 68, 86)( 69, 85)( 70, 84)( 71, 83)
( 72, 82)( 87,102)( 88,101)( 89,107)( 90,106)( 91,105)( 92,104)( 93,103)
( 94,109)( 95,108)( 96,114)( 97,113)( 98,112)( 99,111)(100,110)(115,144)
(116,143)(117,149)(118,148)(119,147)(120,146)(121,145)(122,151)(123,150)
(124,156)(125,155)(126,154)(127,153)(128,152)(129,165)(130,164)(131,170)
(132,169)(133,168)(134,167)(135,166)(136,158)(137,157)(138,163)(139,162)
(140,161)(141,160)(142,159)(171,214)(172,213)(173,219)(174,218)(175,217)
(176,216)(177,215)(178,221)(179,220)(180,226)(181,225)(182,224)(183,223)
(184,222)(185,200)(186,199)(187,205)(188,204)(189,203)(190,202)(191,201)
(192,207)(193,206)(194,212)(195,211)(196,210)(197,209)(198,208)(227,284)
(228,283)(229,289)(230,288)(231,287)(232,286)(233,285)(234,291)(235,290)
(236,296)(237,295)(238,294)(239,293)(240,292)(241,305)(242,304)(243,310)
(244,309)(245,308)(246,307)(247,306)(248,298)(249,297)(250,303)(251,302)
(252,301)(253,300)(254,299)(255,312)(256,311)(257,317)(258,316)(259,315)
(260,314)(261,313)(262,319)(263,318)(264,324)(265,323)(266,322)(267,321)
(268,320)(269,333)(270,332)(271,338)(272,337)(273,336)(274,335)(275,334)
(276,326)(277,325)(278,331)(279,330)(280,329)(281,328)(282,327)(339,431)
(340,430)(341,436)(342,435)(343,434)(344,433)(345,432)(346,424)(347,423)
(348,429)(349,428)(350,427)(351,426)(352,425)(353,438)(354,437)(355,443)
(356,442)(357,441)(358,440)(359,439)(360,445)(361,444)(362,450)(363,449)
(364,448)(365,447)(366,446)(367,403)(368,402)(369,408)(370,407)(371,406)
(372,405)(373,404)(374,396)(375,395)(376,401)(377,400)(378,399)(379,398)
(380,397)(381,410)(382,409)(383,415)(384,414)(385,413)(386,412)(387,411)
(388,417)(389,416)(390,422)(391,421)(392,420)(393,419)(394,418);
s3 := Sym(450)!(  3,115)(  4,116)(  5,117)(  6,118)(  7,119)(  8,120)(  9,121)
( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)( 16,128)( 17,129)
( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)( 24,136)( 25,137)
( 26,138)( 27,139)( 28,140)( 29,141)( 30,142)( 31,143)( 32,144)( 33,145)
( 34,146)( 35,147)( 36,148)( 37,149)( 38,150)( 39,151)( 40,152)( 41,153)
( 42,154)( 43,155)( 44,156)( 45,157)( 46,158)( 47,159)( 48,160)( 49,161)
( 50,162)( 51,163)( 52,164)( 53,165)( 54,166)( 55,167)( 56,168)( 57,169)
( 58,170)( 59,178)( 60,179)( 61,180)( 62,181)( 63,182)( 64,183)( 65,184)
( 66,171)( 67,172)( 68,173)( 69,174)( 70,175)( 71,176)( 72,177)( 73,192)
( 74,193)( 75,194)( 76,195)( 77,196)( 78,197)( 79,198)( 80,185)( 81,186)
( 82,187)( 83,188)( 84,189)( 85,190)( 86,191)( 87,206)( 88,207)( 89,208)
( 90,209)( 91,210)( 92,211)( 93,212)( 94,199)( 95,200)( 96,201)( 97,202)
( 98,203)( 99,204)(100,205)(101,220)(102,221)(103,222)(104,223)(105,224)
(106,225)(107,226)(108,213)(109,214)(110,215)(111,216)(112,217)(113,218)
(114,219)(227,339)(228,340)(229,341)(230,342)(231,343)(232,344)(233,345)
(234,346)(235,347)(236,348)(237,349)(238,350)(239,351)(240,352)(241,353)
(242,354)(243,355)(244,356)(245,357)(246,358)(247,359)(248,360)(249,361)
(250,362)(251,363)(252,364)(253,365)(254,366)(255,367)(256,368)(257,369)
(258,370)(259,371)(260,372)(261,373)(262,374)(263,375)(264,376)(265,377)
(266,378)(267,379)(268,380)(269,381)(270,382)(271,383)(272,384)(273,385)
(274,386)(275,387)(276,388)(277,389)(278,390)(279,391)(280,392)(281,393)
(282,394)(283,402)(284,403)(285,404)(286,405)(287,406)(288,407)(289,408)
(290,395)(291,396)(292,397)(293,398)(294,399)(295,400)(296,401)(297,416)
(298,417)(299,418)(300,419)(301,420)(302,421)(303,422)(304,409)(305,410)
(306,411)(307,412)(308,413)(309,414)(310,415)(311,430)(312,431)(313,432)
(314,433)(315,434)(316,435)(317,436)(318,423)(319,424)(320,425)(321,426)
(322,427)(323,428)(324,429)(325,444)(326,445)(327,446)(328,447)(329,448)
(330,449)(331,450)(332,437)(333,438)(334,439)(335,440)(336,441)(337,442)
(338,443);
poly := sub<Sym(450)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope