Questions?
See the FAQ
or other info.

Polytope of Type {8,4,14}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,4,14}*1792b
if this polytope has a name.
Group : SmallGroup(1792,323566)
Rank : 4
Schlafli Type : {8,4,14}
Number of vertices, edges, etc : 16, 32, 56, 14
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4,14}*896
   4-fold quotients : {4,4,14}*448
   7-fold quotients : {8,4,2}*256b
   8-fold quotients : {2,4,14}*224, {4,2,14}*224
   14-fold quotients : {4,4,2}*128
   16-fold quotients : {4,2,7}*112, {2,2,14}*112
   28-fold quotients : {4,4,2}*64
   32-fold quotients : {2,2,7}*56
   56-fold quotients : {2,4,2}*32, {4,2,2}*32
   112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,113)(  2,114)(  3,115)(  4,116)(  5,117)(  6,118)(  7,119)(  8,120)
(  9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)( 16,128)
( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)( 24,136)
( 25,137)( 26,138)( 27,139)( 28,140)( 29,162)( 30,163)( 31,164)( 32,165)
( 33,166)( 34,167)( 35,168)( 36,155)( 37,156)( 38,157)( 39,158)( 40,159)
( 41,160)( 42,161)( 43,148)( 44,149)( 45,150)( 46,151)( 47,152)( 48,153)
( 49,154)( 50,141)( 51,142)( 52,143)( 53,144)( 54,145)( 55,146)( 56,147)
( 57,169)( 58,170)( 59,171)( 60,172)( 61,173)( 62,174)( 63,175)( 64,176)
( 65,177)( 66,178)( 67,179)( 68,180)( 69,181)( 70,182)( 71,183)( 72,184)
( 73,185)( 74,186)( 75,187)( 76,188)( 77,189)( 78,190)( 79,191)( 80,192)
( 81,193)( 82,194)( 83,195)( 84,196)( 85,218)( 86,219)( 87,220)( 88,221)
( 89,222)( 90,223)( 91,224)( 92,211)( 93,212)( 94,213)( 95,214)( 96,215)
( 97,216)( 98,217)( 99,204)(100,205)(101,206)(102,207)(103,208)(104,209)
(105,210)(106,197)(107,198)(108,199)(109,200)(110,201)(111,202)(112,203);;
s1 := ( 15, 22)( 16, 23)( 17, 24)( 18, 25)( 19, 26)( 20, 27)( 21, 28)( 43, 50)
( 44, 51)( 45, 52)( 46, 53)( 47, 54)( 48, 55)( 49, 56)( 71, 78)( 72, 79)
( 73, 80)( 74, 81)( 75, 82)( 76, 83)( 77, 84)( 99,106)(100,107)(101,108)
(102,109)(103,110)(104,111)(105,112)(113,141)(114,142)(115,143)(116,144)
(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)
(125,153)(126,154)(127,162)(128,163)(129,164)(130,165)(131,166)(132,167)
(133,168)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,161)
(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)
(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,218)(184,219)
(185,220)(186,221)(187,222)(188,223)(189,224)(190,211)(191,212)(192,213)
(193,214)(194,215)(195,216)(196,217);;
s2 := (  1, 57)(  2, 63)(  3, 62)(  4, 61)(  5, 60)(  6, 59)(  7, 58)(  8, 64)
(  9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 71)( 16, 77)
( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 78)( 23, 84)( 24, 83)
( 25, 82)( 26, 81)( 27, 80)( 28, 79)( 29,106)( 30,112)( 31,111)( 32,110)
( 33,109)( 34,108)( 35,107)( 36, 99)( 37,105)( 38,104)( 39,103)( 40,102)
( 41,101)( 42,100)( 43, 92)( 44, 98)( 45, 97)( 46, 96)( 47, 95)( 48, 94)
( 49, 93)( 50, 85)( 51, 91)( 52, 90)( 53, 89)( 54, 88)( 55, 87)( 56, 86)
(113,169)(114,175)(115,174)(116,173)(117,172)(118,171)(119,170)(120,176)
(121,182)(122,181)(123,180)(124,179)(125,178)(126,177)(127,183)(128,189)
(129,188)(130,187)(131,186)(132,185)(133,184)(134,190)(135,196)(136,195)
(137,194)(138,193)(139,192)(140,191)(141,218)(142,224)(143,223)(144,222)
(145,221)(146,220)(147,219)(148,211)(149,217)(150,216)(151,215)(152,214)
(153,213)(154,212)(155,204)(156,210)(157,209)(158,208)(159,207)(160,206)
(161,205)(162,197)(163,203)(164,202)(165,201)(166,200)(167,199)(168,198);;
s3 := (  1, 58)(  2, 57)(  3, 63)(  4, 62)(  5, 61)(  6, 60)(  7, 59)(  8, 65)
(  9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 72)( 16, 71)
( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 79)( 23, 78)( 24, 84)
( 25, 83)( 26, 82)( 27, 81)( 28, 80)( 29, 86)( 30, 85)( 31, 91)( 32, 90)
( 33, 89)( 34, 88)( 35, 87)( 36, 93)( 37, 92)( 38, 98)( 39, 97)( 40, 96)
( 41, 95)( 42, 94)( 43,100)( 44, 99)( 45,105)( 46,104)( 47,103)( 48,102)
( 49,101)( 50,107)( 51,106)( 52,112)( 53,111)( 54,110)( 55,109)( 56,108)
(113,170)(114,169)(115,175)(116,174)(117,173)(118,172)(119,171)(120,177)
(121,176)(122,182)(123,181)(124,180)(125,179)(126,178)(127,184)(128,183)
(129,189)(130,188)(131,187)(132,186)(133,185)(134,191)(135,190)(136,196)
(137,195)(138,194)(139,193)(140,192)(141,198)(142,197)(143,203)(144,202)
(145,201)(146,200)(147,199)(148,205)(149,204)(150,210)(151,209)(152,208)
(153,207)(154,206)(155,212)(156,211)(157,217)(158,216)(159,215)(160,214)
(161,213)(162,219)(163,218)(164,224)(165,223)(166,222)(167,221)(168,220);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(224)!(  1,113)(  2,114)(  3,115)(  4,116)(  5,117)(  6,118)(  7,119)
(  8,120)(  9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)
( 16,128)( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)
( 24,136)( 25,137)( 26,138)( 27,139)( 28,140)( 29,162)( 30,163)( 31,164)
( 32,165)( 33,166)( 34,167)( 35,168)( 36,155)( 37,156)( 38,157)( 39,158)
( 40,159)( 41,160)( 42,161)( 43,148)( 44,149)( 45,150)( 46,151)( 47,152)
( 48,153)( 49,154)( 50,141)( 51,142)( 52,143)( 53,144)( 54,145)( 55,146)
( 56,147)( 57,169)( 58,170)( 59,171)( 60,172)( 61,173)( 62,174)( 63,175)
( 64,176)( 65,177)( 66,178)( 67,179)( 68,180)( 69,181)( 70,182)( 71,183)
( 72,184)( 73,185)( 74,186)( 75,187)( 76,188)( 77,189)( 78,190)( 79,191)
( 80,192)( 81,193)( 82,194)( 83,195)( 84,196)( 85,218)( 86,219)( 87,220)
( 88,221)( 89,222)( 90,223)( 91,224)( 92,211)( 93,212)( 94,213)( 95,214)
( 96,215)( 97,216)( 98,217)( 99,204)(100,205)(101,206)(102,207)(103,208)
(104,209)(105,210)(106,197)(107,198)(108,199)(109,200)(110,201)(111,202)
(112,203);
s1 := Sym(224)!( 15, 22)( 16, 23)( 17, 24)( 18, 25)( 19, 26)( 20, 27)( 21, 28)
( 43, 50)( 44, 51)( 45, 52)( 46, 53)( 47, 54)( 48, 55)( 49, 56)( 71, 78)
( 72, 79)( 73, 80)( 74, 81)( 75, 82)( 76, 83)( 77, 84)( 99,106)(100,107)
(101,108)(102,109)(103,110)(104,111)(105,112)(113,141)(114,142)(115,143)
(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)
(124,152)(125,153)(126,154)(127,162)(128,163)(129,164)(130,165)(131,166)
(132,167)(133,168)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)
(140,161)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)
(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,218)
(184,219)(185,220)(186,221)(187,222)(188,223)(189,224)(190,211)(191,212)
(192,213)(193,214)(194,215)(195,216)(196,217);
s2 := Sym(224)!(  1, 57)(  2, 63)(  3, 62)(  4, 61)(  5, 60)(  6, 59)(  7, 58)
(  8, 64)(  9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 71)
( 16, 77)( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 78)( 23, 84)
( 24, 83)( 25, 82)( 26, 81)( 27, 80)( 28, 79)( 29,106)( 30,112)( 31,111)
( 32,110)( 33,109)( 34,108)( 35,107)( 36, 99)( 37,105)( 38,104)( 39,103)
( 40,102)( 41,101)( 42,100)( 43, 92)( 44, 98)( 45, 97)( 46, 96)( 47, 95)
( 48, 94)( 49, 93)( 50, 85)( 51, 91)( 52, 90)( 53, 89)( 54, 88)( 55, 87)
( 56, 86)(113,169)(114,175)(115,174)(116,173)(117,172)(118,171)(119,170)
(120,176)(121,182)(122,181)(123,180)(124,179)(125,178)(126,177)(127,183)
(128,189)(129,188)(130,187)(131,186)(132,185)(133,184)(134,190)(135,196)
(136,195)(137,194)(138,193)(139,192)(140,191)(141,218)(142,224)(143,223)
(144,222)(145,221)(146,220)(147,219)(148,211)(149,217)(150,216)(151,215)
(152,214)(153,213)(154,212)(155,204)(156,210)(157,209)(158,208)(159,207)
(160,206)(161,205)(162,197)(163,203)(164,202)(165,201)(166,200)(167,199)
(168,198);
s3 := Sym(224)!(  1, 58)(  2, 57)(  3, 63)(  4, 62)(  5, 61)(  6, 60)(  7, 59)
(  8, 65)(  9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 72)
( 16, 71)( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 79)( 23, 78)
( 24, 84)( 25, 83)( 26, 82)( 27, 81)( 28, 80)( 29, 86)( 30, 85)( 31, 91)
( 32, 90)( 33, 89)( 34, 88)( 35, 87)( 36, 93)( 37, 92)( 38, 98)( 39, 97)
( 40, 96)( 41, 95)( 42, 94)( 43,100)( 44, 99)( 45,105)( 46,104)( 47,103)
( 48,102)( 49,101)( 50,107)( 51,106)( 52,112)( 53,111)( 54,110)( 55,109)
( 56,108)(113,170)(114,169)(115,175)(116,174)(117,173)(118,172)(119,171)
(120,177)(121,176)(122,182)(123,181)(124,180)(125,179)(126,178)(127,184)
(128,183)(129,189)(130,188)(131,187)(132,186)(133,185)(134,191)(135,190)
(136,196)(137,195)(138,194)(139,193)(140,192)(141,198)(142,197)(143,203)
(144,202)(145,201)(146,200)(147,199)(148,205)(149,204)(150,210)(151,209)
(152,208)(153,207)(154,206)(155,212)(156,211)(157,217)(158,216)(159,215)
(160,214)(161,213)(162,219)(163,218)(164,224)(165,223)(166,222)(167,221)
(168,220);
poly := sub<Sym(224)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope