Questions?
See the FAQ
or other info.

Polytope of Type {4,56,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,56,2}*1792b
if this polytope has a name.
Group : SmallGroup(1792,323570)
Rank : 4
Schlafli Type : {4,56,2}
Number of vertices, edges, etc : 8, 224, 112, 2
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,28,2}*896
   4-fold quotients : {4,28,2}*448
   7-fold quotients : {4,8,2}*256b
   8-fold quotients : {2,28,2}*224, {4,14,2}*224
   14-fold quotients : {4,4,2}*128
   16-fold quotients : {2,14,2}*112
   28-fold quotients : {4,4,2}*64
   32-fold quotients : {2,7,2}*56
   56-fold quotients : {2,4,2}*32, {4,2,2}*32
   112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 57)(  2, 58)(  3, 59)(  4, 60)(  5, 61)(  6, 62)(  7, 63)(  8, 64)
(  9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)( 16, 72)
( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)( 24, 80)
( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 85)( 30, 86)( 31, 87)( 32, 88)
( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)( 40, 96)
( 41, 97)( 42, 98)( 43, 99)( 44,100)( 45,101)( 46,102)( 47,103)( 48,104)
( 49,105)( 50,106)( 51,107)( 52,108)( 53,109)( 54,110)( 55,111)( 56,112);;
s1 := (  2,  7)(  3,  6)(  4,  5)(  9, 14)( 10, 13)( 11, 12)( 15, 22)( 16, 28)
( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 30, 35)( 31, 34)( 32, 33)
( 37, 42)( 38, 41)( 39, 40)( 43, 50)( 44, 56)( 45, 55)( 46, 54)( 47, 53)
( 48, 52)( 49, 51)( 57, 85)( 58, 91)( 59, 90)( 60, 89)( 61, 88)( 62, 87)
( 63, 86)( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)( 70, 93)
( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)( 77,107)( 78, 99)
( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100);;
s2 := (  1, 58)(  2, 57)(  3, 63)(  4, 62)(  5, 61)(  6, 60)(  7, 59)(  8, 65)
(  9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 72)( 16, 71)
( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 79)( 23, 78)( 24, 84)
( 25, 83)( 26, 82)( 27, 81)( 28, 80)( 29,107)( 30,106)( 31,112)( 32,111)
( 33,110)( 34,109)( 35,108)( 36,100)( 37, 99)( 38,105)( 39,104)( 40,103)
( 41,102)( 42,101)( 43, 93)( 44, 92)( 45, 98)( 46, 97)( 47, 96)( 48, 95)
( 49, 94)( 50, 86)( 51, 85)( 52, 91)( 53, 90)( 54, 89)( 55, 88)( 56, 87);;
s3 := (113,114);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(114)!(  1, 57)(  2, 58)(  3, 59)(  4, 60)(  5, 61)(  6, 62)(  7, 63)
(  8, 64)(  9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)
( 16, 72)( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)
( 24, 80)( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 85)( 30, 86)( 31, 87)
( 32, 88)( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)
( 40, 96)( 41, 97)( 42, 98)( 43, 99)( 44,100)( 45,101)( 46,102)( 47,103)
( 48,104)( 49,105)( 50,106)( 51,107)( 52,108)( 53,109)( 54,110)( 55,111)
( 56,112);
s1 := Sym(114)!(  2,  7)(  3,  6)(  4,  5)(  9, 14)( 10, 13)( 11, 12)( 15, 22)
( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 30, 35)( 31, 34)
( 32, 33)( 37, 42)( 38, 41)( 39, 40)( 43, 50)( 44, 56)( 45, 55)( 46, 54)
( 47, 53)( 48, 52)( 49, 51)( 57, 85)( 58, 91)( 59, 90)( 60, 89)( 61, 88)
( 62, 87)( 63, 86)( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)
( 70, 93)( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)( 77,107)
( 78, 99)( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100);
s2 := Sym(114)!(  1, 58)(  2, 57)(  3, 63)(  4, 62)(  5, 61)(  6, 60)(  7, 59)
(  8, 65)(  9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 72)
( 16, 71)( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 79)( 23, 78)
( 24, 84)( 25, 83)( 26, 82)( 27, 81)( 28, 80)( 29,107)( 30,106)( 31,112)
( 32,111)( 33,110)( 34,109)( 35,108)( 36,100)( 37, 99)( 38,105)( 39,104)
( 40,103)( 41,102)( 42,101)( 43, 93)( 44, 92)( 45, 98)( 46, 97)( 47, 96)
( 48, 95)( 49, 94)( 50, 86)( 51, 85)( 52, 91)( 53, 90)( 54, 89)( 55, 88)
( 56, 87);
s3 := Sym(114)!(113,114);
poly := sub<Sym(114)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 

to this polytope